scholarly journals Ground-state energy of a high-density electron gas in a strong magnetic field

2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-381-Pr5-388
Author(s):  
M. Steinberg ◽  
J. Ortner
1964 ◽  
Vol 133 (2A) ◽  
pp. A371-A374 ◽  
Author(s):  
W. J. Carr ◽  
A. A. Maradudin

2011 ◽  
Vol 25 (15) ◽  
pp. 2019-2030
Author(s):  
LIANGJIE FU ◽  
YUAN CHEN

In this paper, due to the effect of positively-charged screening holes, Coulomb potential energy 1/r is modified to be 1/rp, which is assumed to deviate slightly from the former. Using many-body perturbation theory, we obtain a simple analytic representation of the ground-state energy and correlation energy for a uniform electron gas. Our results agree with those obtained by the numerical and semi-analytic methods at low-density limit. Higher ground-state energies at high-density limit are calculated from our model. High order r expansion terms are found at high-density region. A curve of transition density versus p is drawn via the Misawa spin-scaling relation, which is in consistent with Perdew's study at low-density limit.


1996 ◽  
Vol 10 (28) ◽  
pp. 3827-3856 ◽  
Author(s):  
KAZUMOTO IGUCHI

A tight-binding model is formulated for the calculation of the electronic structure and the ground state energy of the quantum ladder under a magnetic field, where the magnetic flux at the nth plaquette is given by ϕn. First, the theory is applied to obtain the electronic spectra of the quantum ladder models with particular magnetic fluxes such as uniform magnetic fluxes, ϕn=0 and 1/2, and the staggered magnetic flux, ϕn= (−1)n+1ϕ0. From these, it is found that as the effect of electron hopping between two chains—the anisotropy parameter r=ty/tx—is increased, there are a metal-semimetal transition at r=0 and a semimetal–semiconductor transition at r=2 in the first case, and metal-semiconductor transitions at r=0 in the second and third cases. These transitions are thought of as a new category of metal-insulator transition due to the hopping anisotropy of the system. Second, using the spectrum, the ground state energy is calculated in terms of the parameter r. It is found that the ground state energy in the first case diverges as r becomes arbitrarily large, while that in the second and third cases can have the single or double well structure with respect to r, where the system is stable at some critical value of r=rc and the transition between the single and double well structures is associated with whether tx is less than a critical value of txc. The latter cases are very reminiscent of physics in polyacetylene studied by Su, Schrieffer and Heeger.


Sign in / Sign up

Export Citation Format

Share Document