ELECTRONIC STRUCTURE OF THE GROUND STATE OF THE COVALENT AND IONIC SOLIDS : USE OF LOCALIZED ORBITALS. APPLICATION TO THE EQUATION OF STATE OF THE DIAMOND

1972 ◽  
Vol 33 (C3) ◽  
pp. C3-127-C3-130
Author(s):  
J. GELARD ◽  
PH. DURAND
2021 ◽  
Author(s):  
Stephen Sproules

The electronic structures of homovalent [V2(μ-S2)2(R2dtc)4] (R = Et, iBu) and mixed-valent [V2(μ-S2)2(R2dtc)4]+ are reported here. The soft-donor, eight-coordinate ligand shell combined with the fully delocalised ground state provides a...


2014 ◽  
Vol 895 ◽  
pp. 420-423 ◽  
Author(s):  
Sathya Sheela Subramanian ◽  
Baskaran Natesan

Structural optimization, magnetic ground state and electronic structure calculations of tetragonal PbMnO3have been carried out using local density approximation (LDA) implementations of density functional theory (DFT). Structural optimizations were done on tetragonal P4mm (non-centrosymmetric) and P4/mmm (centrosymmetric) structures using experimental lattice parameters and our results indicate that P4mm is more stable than P4/mmm. In order to determine the stable magnetic ground state of PbMnO3, total energies for different magnetic configurations such as nonmagnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM) were computed for both P4mm and P4/mmm structures. The total energy results reveal that the FM non-centrosymmetric structure is found to be the most stable magnetic ground state. The electronic band structure, density of states (DOS) and the electron localization function (ELF) were calculated for the stable FM structure. ELF revealed the distorted non-centrosymmetric structure. The band structure and DOS for the majority spins of FM PbMnO3showed no band gap at the Fermi level. However, a gap opens up at the Fermi level in minority spin channel suggesting that it could be a half-metal and a potential spintronic candidate.


2009 ◽  
Vol 48 (16) ◽  
pp. 7750-7764 ◽  
Author(s):  
Kevin R. Kittilstved ◽  
Lilit Aboshyan Sorgho ◽  
Nahid Amstutz ◽  
Philip L.W. Tregenna-Piggott ◽  
Andreas Hauser

2006 ◽  
Vol 124 (20) ◽  
pp. 204307 ◽  
Author(s):  
Lori A. Burns ◽  
Daniel Murdock ◽  
Patrick H. Vaccaro

1975 ◽  
Vol 28 (11) ◽  
pp. 2343 ◽  
Author(s):  
RC Haddon

The MINDO/3 SCF MO method has been used to investigate the equilibrium geometries, electronic structure and ground state properties of ply and its univalent ions. The results indicate that ply has a low energy of disproportionation and that electron addition or removal leads to little structural change. From an analysis of the results it is concluded that odd-alternant hydrocarbons, and systems based on the ply nucleus in particular, have many of the characteristics which are considered to be important in the design of organic metals and superconductors.


Sign in / Sign up

Export Citation Format

Share Document