Path-conservative central-upwind schemes for nonconservative hyperbolic systems

2019 ◽  
Vol 53 (3) ◽  
pp. 959-985 ◽  
Author(s):  
Manuel Jesús Castro Díaz ◽  
Alexander Kurganov ◽  
Tomás Morales de Luna

We develop path-conservative central-upwind schemes for nonconservative one-dimensional hyperbolic systems of nonlinear partial differential equations. Such systems arise in a variety of applications and the most challenging part of their numerical discretization is a robust treatment of nonconservative product terms. Godunov-type central-upwind schemes were developed as an efficient, highly accurate and robust ``black-box’’ solver for hyperbolic systems of conservation and balance laws. They were successfully applied to a large number of hyperbolic systems including several nonconservative ones. To overcome the difficulties related to the presence of nonconservative product terms, several special techniques were proposed. However, none of these techniques was sufficiently robust and thus the applicability of the original central-upwind schemes was rather limited. In this paper, we rewrite the central-upwind schemes in the form of path-conservative schemes. This helps us (i) to show that the main drawback of the original central-upwind approach was the fact that the jump of the nonconservative product terms across cell interfaces has never been taken into account and (ii) to understand how the nonconservative products should be discretized so that their influence on the numerical solution is accurately taken into account. The resulting path-conservative central-upwind scheme is a new robust tool for both conservative and nonconservative hyperbolic systems. We apply the new scheme to the Saint-Venant system with discontinuous bottom topography and two-layer shallow water system. Our numerical results illustrate the good performance of the new path-conservative central-upwind scheme, its robustness and ability to achieve very high resolution.

Acta Numerica ◽  
2018 ◽  
Vol 27 ◽  
pp. 289-351 ◽  
Author(s):  
Alexander Kurganov

Shallow-water equations are widely used to model water flow in rivers, lakes, reservoirs, coastal areas, and other situations in which the water depth is much smaller than the horizontal length scale of motion. The classical shallow-water equations, the Saint-Venant system, were originally proposed about 150 years ago and still are used in a variety of applications. For many practical purposes, it is extremely important to have an accurate, efficient and robust numerical solver for the Saint-Venant system and related models. As their solutions are typically non-smooth and even discontinuous, finite-volume schemes are among the most popular tools. In this paper, we review such schemes and focus on one of the simplest (yet highly accurate and robust) methods: central-upwind schemes. These schemes belong to the family of Godunov-type Riemann-problem-solver-free central schemes, but incorporate some upwinding information about the local speeds of propagation, which helps to reduce an excessive amount of numerical diffusion typically present in classical (staggered) non-oscillatory central schemes. Besides the classical one- and two-dimensional Saint-Venant systems, we will consider the shallow-water equations with friction terms, models with moving bottom topography, the two-layer shallow-water system as well as general non-conservative hyperbolic systems.


Author(s):  
Gerardo Hernandez-Duenas ◽  
Jorge Balbás

We present a new high-resolution, non-oscillatory semi-discrete central-upwind scheme for one-dimensional two-layer shallow-water flows with friction and entrainment along channels with arbitrary cross sections and bottom topography. These flows are described by a conditionally hyperbolic balance law  with non-conservative products. A detailed description of the properties of the model is provided, including entropy inequalities and asymptotic approximations of the eigenvalues of the corresponding coefficient matrix. The scheme extends existing central-upwind semi-discrete numerical methods for hyperbolic conservation and balance laws and it satisfies two properties crucial for the accurate simulation of shallow-water flows: it {\it preserves the positivity} of the water depth for each layer, and it is {\it well balanced}, {\it i.e.}, the source terms arising from the geometry of the channel are discretized so as to balance the non-linear hyperbolic flux gradients. Along with the description of the scheme and proofs of these two properties, we present several numerical experiments that demonstrate the robustness of the numerical algorithm.


2013 ◽  
Vol 18 (5) ◽  
pp. 675-693 ◽  
Author(s):  
Alina Chertock ◽  
Alexander Kurganov ◽  
Alexander Kurganov ◽  
Zhuolin Qu ◽  
Tong Wu

Two-layer shallow water equations describe flows that consist of two layers of inviscid fluid of different (constant) densities flowing over bottom topography. Unlike the single-layer shallow water system, the two-layer one is only conditionally hyperbolic: the system loses its hyperbolicity because of the momentum exchange terms between the layers and as a result its solutions may develop instabilities. We study a three-layer approximation of the two-layer shallow water equations by introducing an intermediate layer of a small depth. We examine the hyperbolicity range of the three-layer model and demonstrate that while it still may lose hyperbolicity, the three-layer approximation may improve stability properties of the two-layer shallow water system.


2013 ◽  
Vol 14 (3) ◽  
pp. 664-702 ◽  
Author(s):  
Arthur Bousquet ◽  
Madalina Petcu ◽  
Ming-Cheng Shiue ◽  
Roger Temam ◽  
Joseph Tribbia

AbstractA new set of boundary conditions has been derived by rigorous methods for the shallow water equations in a limited domain. The aim of this article is to present these boundary conditions and to report on numerical simulations which have been performed using these boundary conditions. The new boundary conditions which are mildly dissipative let the waves move freely inside and outside the domain. The problems considered include a one-dimensional shallow water system with two layers of fluids and a two-dimensional inviscid shallow water system in a rectangle.


2015 ◽  
Vol 300 ◽  
pp. 202-218 ◽  
Author(s):  
Xin Liu ◽  
Abdolmajid Mohammadian ◽  
Alexander Kurganov ◽  
Julio Angel Infante Sedano

2007 ◽  
Vol 17 (12) ◽  
pp. 2055-2113 ◽  
Author(s):  
MANUEL J. CASTRO ◽  
ALBERTO PARDO MILANÉS ◽  
CARLOS PARÉS

The goal of this paper is to generalize the hydrostatic reconstruction technique introduced in Ref. 2 for the shallow water system to more general hyperbolic systems with source term. The key idea is to interpret the numerical scheme obtained with this technique as a path-conservative method, as defined in Ref. 35. This generalization allows us, on the one hand, to construct well-balanced numerical schemes for new problems, as the two-layer shallow water system. On the other hand, we construct numerical schemes for the shallow water system with better well-balanced properties. In particular we obtain a Roe method which solves exactly every stationary solution, and not only those corresponding to water at rest.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
E. Momoniat ◽  
M. M. Rashidi ◽  
R. S. Herbst

Numerical solutions of a coupled system of nonlinear partial differential equations modelling the effects of surfactant on the spreading of a thin film on a horizontal substrate are investigated. A CFL condition is obtained from a von Neumann stability analysis of a linearised system of equations. Numerical solutions obtained from a Roe upwind scheme with a third-order TVD Runge-Kutta approximation to the time derivative are compared to solutions obtained with a Roe-Sweby scheme coupled to a minmod limiter and a TVD approximation to the time derivative. Results from both of these schemes are compared to a Roe upwind scheme and a BDF approximation to the time derivative. In all three cases high-order approximations to the spatial derivatives are employed on the interior points of the spatial domain. The Roe-BDF scheme is shown to be an efficient numerical scheme for capturing sharp changes in gradient in the free surface profile and surfactant concentration. Numerical simulations of an initial exponential free surface profile coupled with initial surfactant concentrations for both exogenous and endogenous surfactants are considered.


Sign in / Sign up

Export Citation Format

Share Document