scholarly journals A three-phase flow model with two miscible phases

2019 ◽  
Vol 53 (4) ◽  
pp. 1373-1389 ◽  
Author(s):  
J.-M. Hérard ◽  
H. Mathis

The paper concerns the modelling of a compressible mixture of a liquid, its vapor and a gas. The gas and the vapor are miscible while the liquid is immiscible with the gaseous phases. This assumption leads to non symmetric constraints on the void fractions. We derive a three-phase three-pressure model endowed with an entropic structure. We show that interfacial pressures are uniquely defined and propose entropy-consistent closure laws for the source terms. Naturally one exhibits that the mechanical relaxation complies with Dalton’s law on the phasic pressures. Then the hyperbolicity and the eigenstructure of the homogeneous model are investigated and we prove that it admits a symmetric form leading to a local existence result. We also derive a barotropic variant which possesses similar properties.

2021 ◽  
Author(s):  
Satoru Takano ◽  
Sotaro Masanobu ◽  
Shigeo Kanada ◽  
Masao Ono

Abstract Subsea minerals exist in the deep water within Japan’s exclusive economic zone. There are many technical issues which should be addressed for subsea mining. The air-lift pumping systems are one of promising methods for subsea minerals transport. Flow assurance for three-phase flow is important to design the air-lift pumping system for subsea mining. It is important to establish methods for estimating void fractions and frictional pressure drops. To establish the methods for three-phase flow, we reviewed previous studies for two- or three-phase flow. There are some models to estimate the void fractions such as slip flow model and drift flux model. There are also some models to estimate the frictional pressure drops such as homogeneous model and separated flow model. We calculated void fractions and frictional pressure drops by existing correlation and compared calculated results with experimental data in two- or three-phase flow. In addition, we proposed the methods for estimating the void fractions and frictional pressure drops in three-phase flow. These had fewer number of experimental constants than existing correlations, these could calculate void fractions and frictional pressure drops in more various conditions than existing correlations.


2006 ◽  
Vol 342 (10) ◽  
pp. 779-784 ◽  
Author(s):  
Jean-Marc Hérard

SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 374-388 ◽  
Author(s):  
Mahdy Shirdel ◽  
Kamy Sepehrnoori

Summary Multiphase flow models have been widely used for downhole-gauging and production logging analysis in the wellbores. Coexistence of hydrocarbon fluids with water in production wells yields a complex flow system that requires a three-phase flow model for better characterizing the flow and analyzing measured downhole data. In the past few decades, many researchers and commercial developers in the petroleum industry have aggressively expanded development of robust multiphase flow models for the wellbore. However, many of the developed models apply homogeneous-flow models with limited assumptions for slippage between gas and liquid bulks or use purely two-fluid models. In this paper, we propose a new three-phase flow model that consists of a two-fluid model between liquid and gas and a drift-flux model between water and oil in the liquid phase. With our new method, we improve the simplifying assumptions for modeling oil, water, and gas multiphase flow in wells, which can be advantageous for better downhole flow characterization and phase separations in gravity-dominated systems. Furthermore, we developed semi-implicit and nearly implicit numerical algorithms to solve the system of equations. We discuss the stepwise-development procedures for these methods along with the assumptions in our flow model. We verify our model results against analytical solutions for the water faucet problem and phase redistribution, field data, and a commercial simulator. Our model results show very good agreement with benchmarks in the data.


2004 ◽  
Vol 83 (7) ◽  
pp. 649-660
Author(s):  
Brahim Amaziane ◽  
Bienvenu Ondami

IERI Procedia ◽  
2013 ◽  
Vol 5 ◽  
pp. 245-251 ◽  
Author(s):  
Tarworn Ruttithiwapanich ◽  
Warinthorn Songkasiri ◽  
Wiwat Ruenglertpanyakul

Author(s):  
К.А. Новиков

Сформулированы и доказаны принципы максимума для нескольких моделей многофазной фильтрации. Первый принцип справедлив для фазовых насыщенностей в несжимаемом случае модели двухфазной фильтрации с постоянными вязкостями, а второй - для глобального давления в моделях двух- и трехфазной фильтрации Two maximum principles for several multi-phase flow models are formulated and proved. The first one is valid for phase saturations in an incompressible two-phase flow model with constant viscosities. The second one is valid for the global pressure in two- and three-phase flow models with constant viscosities and is also valid for phase pressures in the case of zero capillary pressure.


Sign in / Sign up

Export Citation Format

Share Document