scholarly journals Compositional Description of Three-Phase Flow Model in a Gas-Lifted Well with High Water-Cut

Author(s):  
M. Mahmudi ◽  
M. Taghi Sadeghi
2016 ◽  
Vol 13 (1) ◽  
pp. 179-193 ◽  
Author(s):  
An Zhao ◽  
Yun-Feng Han ◽  
Ying-Yu Ren ◽  
Lu-Sheng Zhai ◽  
Ning-De in

Sensors ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1703 ◽  
Author(s):  
Yanjun Wang ◽  
Haoyu Li ◽  
Xingbin Liu ◽  
Yuhui Zhang ◽  
Ronghua Xie ◽  
...  

2006 ◽  
Vol 342 (10) ◽  
pp. 779-784 ◽  
Author(s):  
Jean-Marc Hérard

2021 ◽  
Author(s):  
Satoru Takano ◽  
Sotaro Masanobu ◽  
Shigeo Kanada ◽  
Masao Ono

Abstract Subsea minerals exist in the deep water within Japan’s exclusive economic zone. There are many technical issues which should be addressed for subsea mining. The air-lift pumping systems are one of promising methods for subsea minerals transport. Flow assurance for three-phase flow is important to design the air-lift pumping system for subsea mining. It is important to establish methods for estimating void fractions and frictional pressure drops. To establish the methods for three-phase flow, we reviewed previous studies for two- or three-phase flow. There are some models to estimate the void fractions such as slip flow model and drift flux model. There are also some models to estimate the frictional pressure drops such as homogeneous model and separated flow model. We calculated void fractions and frictional pressure drops by existing correlation and compared calculated results with experimental data in two- or three-phase flow. In addition, we proposed the methods for estimating the void fractions and frictional pressure drops in three-phase flow. These had fewer number of experimental constants than existing correlations, these could calculate void fractions and frictional pressure drops in more various conditions than existing correlations.


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 374-388 ◽  
Author(s):  
Mahdy Shirdel ◽  
Kamy Sepehrnoori

Summary Multiphase flow models have been widely used for downhole-gauging and production logging analysis in the wellbores. Coexistence of hydrocarbon fluids with water in production wells yields a complex flow system that requires a three-phase flow model for better characterizing the flow and analyzing measured downhole data. In the past few decades, many researchers and commercial developers in the petroleum industry have aggressively expanded development of robust multiphase flow models for the wellbore. However, many of the developed models apply homogeneous-flow models with limited assumptions for slippage between gas and liquid bulks or use purely two-fluid models. In this paper, we propose a new three-phase flow model that consists of a two-fluid model between liquid and gas and a drift-flux model between water and oil in the liquid phase. With our new method, we improve the simplifying assumptions for modeling oil, water, and gas multiphase flow in wells, which can be advantageous for better downhole flow characterization and phase separations in gravity-dominated systems. Furthermore, we developed semi-implicit and nearly implicit numerical algorithms to solve the system of equations. We discuss the stepwise-development procedures for these methods along with the assumptions in our flow model. We verify our model results against analytical solutions for the water faucet problem and phase redistribution, field data, and a commercial simulator. Our model results show very good agreement with benchmarks in the data.


2004 ◽  
Vol 83 (7) ◽  
pp. 649-660
Author(s):  
Brahim Amaziane ◽  
Bienvenu Ondami

2018 ◽  
Vol 73 (6) ◽  
pp. 485-499
Author(s):  
Weixin Liu ◽  
Ningde Jin ◽  
Yunfeng Han ◽  
Jing Ma

AbstractIn the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.


2010 ◽  
Vol 21 (1) ◽  
pp. 8-19 ◽  
Author(s):  
Mahmoud Meribout ◽  
Nabeel Al-Rawahi ◽  
Ahmed Al-Naamany ◽  
Ali Al-Bimani ◽  
Khamis Al-Busaidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document