scholarly journals A virtual element discretization for the time dependent Navier-Stokes equations in stream-function formulation

Author(s):  
Dibyendu Adak ◽  
David Mora ◽  
Sundararajan Natarajan ◽  
Alberth Silgado

In this work, a new Virtual Element Method (VEM) of arbitrary order $k \geq 2$ for the time dependent Navier-Stokes equations in stream-function form is proposed and analyzed. Using suitable projection operators, the bilinear and trilinear terms are discretized by only using the proposed degrees of freedom associated with the virtual space. Under certain assumptions on the computational domain, error estimations are derived and shown that the method is optimally convergent in both space and time variables. Finally, to justify the theoretical analysis, four benchmark examples are examined numerically.

1988 ◽  
Vol 190 ◽  
pp. 87-112 ◽  
Author(s):  
M. E. Ralph ◽  
T. J. Pedley

The unsteady flow of a viscous, incompressible fluid in a channel with a moving indentation in one wall has been studied by numerical solution of the Navier-Stokes equations. The solution was obtained in stream-function-vorticity form using finite differences. Leapfrog time-differencing and the Dufort-Frankel substitution were used in the vorticity transport equation, and the Poisson equation for the stream function was solved by multigrid methods. In order to resolve the boundary-condition difficulties arising from the presence of the moving wall, a time-dependent transformation was applied, complicating the equations but ensuring that the computational domain remained a fixed rectangle.Downstream of the moving indentation, the flow in the centre of the channel becomes wavy, and eddies are formed between the wave crests/troughs and the walls. Subsequently, certain of these eddies ‘double’, that is a second vortex centre appears upstream of the first. These observations are qualitatively similar to previous experimental findings (Stephanoff et al. 1983, and Pedley & Stephanoff 1985), and quantitative comparisons are also shown to be favourable. Plots of vorticity contours confirm that the wave generation process is essentially inviscid and reveal the vorticity dynamics of eddy doubling, in which viscous diffusion and advection are important at different stages. The maximum magnitude of wall vorticity is found to be much larger than in quasi-steady flow, with possibly important biomedical implications.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document