Flow in a channel with a moving indentation

1988 ◽  
Vol 190 ◽  
pp. 87-112 ◽  
Author(s):  
M. E. Ralph ◽  
T. J. Pedley

The unsteady flow of a viscous, incompressible fluid in a channel with a moving indentation in one wall has been studied by numerical solution of the Navier-Stokes equations. The solution was obtained in stream-function-vorticity form using finite differences. Leapfrog time-differencing and the Dufort-Frankel substitution were used in the vorticity transport equation, and the Poisson equation for the stream function was solved by multigrid methods. In order to resolve the boundary-condition difficulties arising from the presence of the moving wall, a time-dependent transformation was applied, complicating the equations but ensuring that the computational domain remained a fixed rectangle.Downstream of the moving indentation, the flow in the centre of the channel becomes wavy, and eddies are formed between the wave crests/troughs and the walls. Subsequently, certain of these eddies ‘double’, that is a second vortex centre appears upstream of the first. These observations are qualitatively similar to previous experimental findings (Stephanoff et al. 1983, and Pedley & Stephanoff 1985), and quantitative comparisons are also shown to be favourable. Plots of vorticity contours confirm that the wave generation process is essentially inviscid and reveal the vorticity dynamics of eddy doubling, in which viscous diffusion and advection are important at different stages. The maximum magnitude of wall vorticity is found to be much larger than in quasi-steady flow, with possibly important biomedical implications.

Author(s):  
Dibyendu Adak ◽  
David Mora ◽  
Sundararajan Natarajan ◽  
Alberth Silgado

In this work, a new Virtual Element Method (VEM) of arbitrary order $k \geq 2$ for the time dependent Navier-Stokes equations in stream-function form is proposed and analyzed. Using suitable projection operators, the bilinear and trilinear terms are discretized by only using the proposed degrees of freedom associated with the virtual space. Under certain assumptions on the computational domain, error estimations are derived and shown that the method is optimally convergent in both space and time variables. Finally, to justify the theoretical analysis, four benchmark examples are examined numerically.


Author(s):  
Wolfgang Höhn

During the design of the compressor and turbine stages of today’s aeroengines, aerodynamically induced vibrations become increasingly important since higher blade load and better efficiency are desired. In this paper the development of a method based on the unsteady, compressible Navier-Stokes equations in two dimensions is described in order to study the physics of flutter for unsteady viscous flow around cascaded vibrating blades at stall. The governing equations are solved by a finite difference technique in boundary fitted coordinates. The numerical scheme uses the Advection Upstream Splitting Method to discretize the convective terms and central differences discretizing the viscous terms of the fully non-linear Navier-Stokes equations on a moving H-type mesh. The unsteady governing equations are explicitly and implicitly marched in time in a time-accurate way using a four stage Runge-Kutta scheme on a parallel computer or an implicit scheme of the Beam-Warming type on a single processor. Turbulence is modelled using the Baldwin-Lomax turbulence model. The blade flutter phenomenon is simulated by imposing a harmonic motion on the blade, which consists of harmonic body translation in two directions and a rotation, allowing an interblade phase angle between neighboring blades. Non-reflecting boundary conditions are used for the unsteady analysis at inlet and outlet of the computational domain. The computations are performed on multiple blade passages in order to account for nonlinear effects. A subsonic massively stalled unsteady flow case in a compressor cascade is studied. The results, compared with experiments and the predictions of other researchers, show reasonable agreement for inviscid and viscous flow cases for the investigated flow situations with respect to the Steady and unsteady pressure distribution on the blade in separated flow areas as well as the aeroelastic damping. The results show the applicability of the scheme for stalled flow around cascaded blades. As expected the viscous and inviscid computations show different results in regions where viscous effects are important, i.e. in separated flow areas. In particular, different predictions for inviscid and viscous flow for the aerodynamic damping for the investigated flow cases are found.


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


2021 ◽  
Vol 8 (3) ◽  
pp. 418-424
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G. Sankara Sekhar Raju

Incompressible 2-D Navier-stokes equations for various values of Reynolds number with and without partial slip conditions are studied numerically. The Lid-Driven cavity (LDC) with uniform driven lid problem is employed with vorticity - Stream function (VSF) approach. The uniform mesh grid is used in finite difference approximation for solving the governing Navier-stokes equations and developed MATLAB code. The numerical method is validated with benchmark results. The present work is focused on the analysis of lid driven cavity flow of incompressible fluid with partial slip conditions (imposed on side walls of the cavity). The fluid flow patterns are studied with wide range of Reynolds number and slip parameters.


Author(s):  
Dimitiros I. Papadimitriou ◽  
Kyriakos C. Giannakoglou

In this paper, a constrained optimization algorithm is formulated and utilized to improve the aerodynamic performance of a 3D peripheral compressor blade cascade. The cascade efficiency is measured in terms of entropy generation along the developed flowfield, which defines the field objective functional to be minimized. Its gradient with respect to the design variables, which are the coordinates of the Non-Uniform Rational B-Spline (NURBS) control points defining the blade, is computed through a continuous adjoint formulation of the Navier-Stokes equations based on the aforementioned functional. The steepest descent algorithm is used to locate the optimal set of design variables, i.e. the optimal blade shape. In addition to the well-known advantages of the adjoint method, the current formulation has even less CPU cost for the gradient computation as it leads to gradient expression which is free of field variations in geometrical quantities (such as derivatives of interior grid node coordinates with respect to the design variables); the computation of the latter would be costly since it requires remeshing anew the computational domain for each bifurcated design variable. The geometrical constraints, which depend solely on the blade parameterization, are handled by a quadratic penalty method by introducing additional Lagrange multipliers.


1985 ◽  
Vol 160 ◽  
pp. 93-117 ◽  
Author(s):  
Ta Phuoc Loc ◽  
R. Bouard

Early stages of unsteady viscous flows around a circular cylinder at Reynolds numbers of 3 × 103 and 9.5 × 103 are analysed numerically by direct integration of the Navier–Stokes equations – a fourth-order finite-difference scheme is used for the resolution of the stream-function equation and a second-order one for the vorticity-transport equation. Evolution with time of the flow structure is studied in detail. Some new phenomena are revealed and confirmed by experiments.The influence of the grid systems and the downstream boundary conditions on the flow structure and the velocity profiles is reported. The computed results are compared qualitatively and quantitatively with experimental visualization and measurements. The comparison is found to be satisfactory.


Sign in / Sign up

Export Citation Format

Share Document