scholarly journals Influence of the layer thickness in the Fused Deposition Modeling process on the dimensional and shape accuracy of the upper teeth model

2017 ◽  
Vol 137 ◽  
pp. 02006 ◽  
Author(s):  
Ján Milde ◽  
Ladislav Morovič ◽  
Jakub Blaha
Author(s):  
Shrikrishna Pawar ◽  
◽  
Sarfraz Ali Quadri ◽  
Dr. Dhananjay Dolas ◽  
◽  
...  

This paper aims to explore the effect of layer thickness, infill density and build orientation on the material consumption and manufacturing time of specimens printed by the fused deposition modeling process. Specimens in accordance with ASTM Standards were printed by varying the process parameters such as layer thickness, infill density and build orientation. Time required to manufacture the part and amount of material consumed during the process are recorded. Increase in infill density results into increase in material consumption and manufacturing time. Layer thickness and build orientation also impacts manufacturing time and material consumption respectively. With increased application of FDM process, determining the process parameter to decrease the material consumption and manufacturing time shall help the FDM practitioners globally. Present work elucidates the optimization of FDM process parameters to achieve minimum material consumption and manufacturing time.


Author(s):  
Holm Altenbach ◽  
◽  
G´abor Janiga ◽  
Rene Androsch ◽  
Mario Beiner ◽  
...  

With increasing usage of additive manufacturing methods for mechanical parts the need for precise and reliable simulations of the manufacturing process increases as well. In this paper various com- putations suited for simulating the fused deposition modeling process are considered in two dimensions. In fused deposition modeling a molten polymer is laid down on a prescribed path before the cooling of the melt begins. The occuring flows are treated as multiphase flows. To model the deposition of the filament, methods of computational fluid dynamics are used in ANSYS-Fluent, namely the volume of fluid method (VOF). Different numerical experiments are simulated


2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


2019 ◽  
Vol 19 (2) ◽  
pp. 412-423 ◽  
Author(s):  
Feng Li ◽  
Zhonghua Yu ◽  
Zhensheng Yang ◽  
Xuanwei Shen

Fused deposition modeling is a popular technique for three-dimensional prototyping since it is cost-effective, convenient to operate, and environment-friendly. However, the low quality of its printed products jeopardizes its future development. Distortion, also known as warping deformation, which is caused by many factors such as inappropriate process parameters and process drifts, is one of the most common defects in the fused deposition modeling process. Rapid detection of such part distortion during the printing process is beneficial for improving the production efficiency and saving materials. In this article, a real-time part distortion monitoring method based on acoustic emission is presented. Our work is to identify distortion defects and understand the condition of the distortion area through sensing and digital signal processing techniques. In our experiments, both the acoustic emission hits and original signals were acquired during the fused deposition modeling process. Then, the acoustic emission hits were analyzed. Ensemble empirical mode decomposition was utilized to eliminate noise and extract features from the original acoustic emission signal to further analyze the acoustic emission signal in the case of part distortion. Furthermore, the root mean square of the reconstructed signals was calculated, and the prediction results are strongly correlated with the ground truth printing states. This work provides a promising method for the quality diagnosis of printing parts.


Sign in / Sign up

Export Citation Format

Share Document