scholarly journals Validation of short-circuit current calculations in electric power system

2017 ◽  
Vol 141 ◽  
pp. 01043
Author(s):  
Aleksey Suvorov ◽  
Mikhail Andreev
2021 ◽  
pp. 311-327
Author(s):  
Xiren Miao ◽  
Shengbin Zhuang ◽  
Jiamin Li ◽  
Lingling Tang

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Choong-Koo Chang

In order to supply electric power to the safety related loads, safety and reliability of onsite power have to be ensured for the safety function performance in nuclear power plants. Even though the existing electric power system of APR1400 meets the requirements of codes regarding Class 1E system, there is a room for improvement in the design margin against the voltage drop and short circuit current. This paper discusses the amount that the voltage drop and short circuit current occur in the existing electric power system of APR1400. Additionally, this paper studies with regard to the improved model that has the extra margin against the high voltage drop and short circuit current by separation of unit auxiliary transformer (UAT) and standby auxiliary transformer (SAT) for the Class 1E loads. The improved model of the electric power system by separation of UAT and SAT has been suggested through this paper. Additionally, effects of reliability and cost caused by the electric power system modification are considered.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


2019 ◽  
Vol 10 (1) ◽  
pp. 35-41
Author(s):  
Dwi Ajiatmo ◽  
Imam Robandi ◽  
Machrus Ali ◽  
Betta Aidya Suroya

Short circuit is one type of interference that often occurs in electric power systems. The interference if it lasts a long time will affect the quality and continity of electrical power distribution as well as the reliability and safety of the equipment on the system. To minimize the possibility of interference and to minimize the consequences caused by interference, an analysis of disturbances in the electric power system is needed. This study discusses the classification and analysis of disturbances in the electric power system. The type of interference in the electric power system is classified into two, namely symmetry and non-symmetrical interference. Symmetry disturbances are three phase disturbances which are described by the equation of the sequence of the symmetry component system. Sequence equations from the symmetry component system are positive sequence equations, negative sequence equations, and zero sequence equations. Non-symmetrical interference is a disorder that often occurs in electric power systems, namely the interference of one network to the ground, network interference to the network and interference of two networks to the ground. This research is to classify and to analyze the types of disturbances in the Java-Bali electric power system 500 kV 20 buses in the form of a single line diagram, using Power World Simulator and ETAP Software applications. The simulation results are calculated and display the simulation design of the power system with the tools contained in the program.


Author(s):  
Fadhel Putra Winarta ◽  
Yoli Andi Rozzi

The study of electric power flow analysis (Load Flow) is intended to obtain information about the flow of power or voltage in an electric power system network. This information is needed to evaluate the performance of the power system. Electrical power flow problems include calculating the flow and system voltage at certain terminals or buses. The benefits of this power flow study are to find out the voltage at each node in the system, to find out whether all the equipment meets the specified limits to deliver the desired power, and to obtain the original conditions in the new system planning. This study is divided into two: the analysis of data when the conditions have not been added wind turbine and after the addition of 300 kW wind turbine with software power station ETAP software 12.6.0 and the Newton-Raphson method will be used in analyzing the power flow of the electric power system. Based on the results of the tests, it is found that the overall value of losses for power flow before the addition of DG is 0.031 MW and 0.037 Mvar, for the voltage drop with the lowest percentage, namely on bus 10 with a percentage of 96.45 for the 0.4 kV system and the 20 kV system on bus 19 with a percentage of 99.03, the largest% PF load was in lump 1 with 98.64 and the smallest% PF was in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University before the addition of DG with 3-phase disturbances averaged 13.354 A, 1-phase disturbances averaged 3.521 A, 2-phase disturbances averaged 11.719 A and 2 ground phases of 12.842 A Whereas for the value of power flow after the addition of DG in the form of the wind turbine of 300 kW the overall value of losses is 0.032 MW and 0.042 MvarAR, for the voltage drop with the percentage for voltage drop with the lowest percentage is bus 10 with a percentage of 96.63 for system 0, 4 kV and a 20 kV system on bus 14 with a percentage of 98.1, the largest% PF load is in lump 1 with 98.64 and the smallest% PF is in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University after the addition of DG with 3 phase disturbances has an average value of 13.354 A, 1 phase disturbance averages 3.523 A, 2 phase disturbances average 11.737 A and 2 phases ground is 12.059 A For the source in this system, after the addition of DG, there was a change in the% PF of the PLN grid, namely 79.53 and the wind turbine -83%.


Author(s):  
Valentin Makarovich Prikhodko ◽  
◽  
Irina Valentinovna Prikhodko ◽  
Vasily Yuryevich Lucchino ◽  
◽  
...  

2021 ◽  
Vol 6 (2) ◽  
pp. 1422
Author(s):  
Doni Abdul Mukti ◽  
Budi Sudiarto

Protection is a safety in the electric power system installed in the electric power distribution system, power transformer, electric power transmission, and electric generator used to secure the power system electricity from electrical disturbances or overloads by separating the disturbed parts of the electric power system from the undisturbed electrical power system so that the undisturbed electrical system can continue to work. The protection system at the T75B substation has a work failure where when there is a short circuit on the consumer side, it causes the PMT (Power Breaker) for the Malibu Feeder at the Kebon Sirih Substation to trip while the CBO (Circuit Breaker Outgoing) cubicle at the T75B substation does not trip. This resulted in an unexpected widespread blackout. To find out the cause of the failure of the protection system, several tests and analyzes were carried out, namely protection design testing, protection relay coordination testing, protection system construction analysis, protection equipment performance testing. It is hoped that the test results can be used as a reference for improvement so that similar failures do not recur.


Sign in / Sign up

Export Citation Format

Share Document