scholarly journals Load Flow Analysis and Short Circuit Faults with the Additional Distributed Generation Wind Turbine 300 kW at Andalas University

Author(s):  
Fadhel Putra Winarta ◽  
Yoli Andi Rozzi

The study of electric power flow analysis (Load Flow) is intended to obtain information about the flow of power or voltage in an electric power system network. This information is needed to evaluate the performance of the power system. Electrical power flow problems include calculating the flow and system voltage at certain terminals or buses. The benefits of this power flow study are to find out the voltage at each node in the system, to find out whether all the equipment meets the specified limits to deliver the desired power, and to obtain the original conditions in the new system planning. This study is divided into two: the analysis of data when the conditions have not been added wind turbine and after the addition of 300 kW wind turbine with software power station ETAP software 12.6.0 and the Newton-Raphson method will be used in analyzing the power flow of the electric power system. Based on the results of the tests, it is found that the overall value of losses for power flow before the addition of DG is 0.031 MW and 0.037 Mvar, for the voltage drop with the lowest percentage, namely on bus 10 with a percentage of 96.45 for the 0.4 kV system and the 20 kV system on bus 19 with a percentage of 99.03, the largest% PF load was in lump 1 with 98.64 and the smallest% PF was in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University before the addition of DG with 3-phase disturbances averaged 13.354 A, 1-phase disturbances averaged 3.521 A, 2-phase disturbances averaged 11.719 A and 2 ground phases of 12.842 A Whereas for the value of power flow after the addition of DG in the form of the wind turbine of 300 kW the overall value of losses is 0.032 MW and 0.042 MvarAR, for the voltage drop with the percentage for voltage drop with the lowest percentage is bus 10 with a percentage of 96.63 for system 0, 4 kV and a 20 kV system on bus 14 with a percentage of 98.1, the largest% PF load is in lump 1 with 98.64 and the smallest% PF is in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University after the addition of DG with 3 phase disturbances has an average value of 13.354 A, 1 phase disturbance averages 3.523 A, 2 phase disturbances average 11.737 A and 2 phases ground is 12.059 A For the source in this system, after the addition of DG, there was a change in the% PF of the PLN grid, namely 79.53 and the wind turbine -83%.

2021 ◽  
Vol 5 (2) ◽  
pp. 80-87
Author(s):  
Muhammad Ruswandi Djalal ◽  
Makmur Saini ◽  
A.M Shiddiq Yunus

Power flow analysis in an electric power system is an analysis that reveals the performance of an electric power system and the flow of power (active and reactive) for certain conditions when the system is working. The analysis was carried out using the ETAP 16.00 software, the method used was the newton rapshon by taking a case study of normal conditions. From the results of the study, it can be seen that the power flow that occurs in each channel of the 150 kV system in the South Sulawesi system. The amount of active power (MW) that occurs during normal conditions based on the simulation is 1730.87 MW, where the active power is the largest, which is 171 MW from BUS15_TLASA to BUS13_SGMNSA. For the voltage data, there is a slight comparison of the voltage during the simulation compared to the PLN data.


Author(s):  
Ajith M ◽  
Dr. R. Rajeswari

Power-flow studies are of great significance in planning and designing the future expansion of power systems as well as in determining the best operation of existing systems. Technologies such as renewables and power electronics are aiding in power conversion and control, thus making the power system massive, complex, and dynamic. HVDC is being preferred due to limitations in HVAC such as reactive power loss, stability, current carrying capacity, operation and control. The HVDC system is being used for bulk power transmission over long distances with minimum losses using overhead transmission lines or submarine cable crossings. Recent years have witnessed an unprecedented growth in the number of the HVDC projects. Due to the vast size and inaccessibility of transmission systems, real time testing can prove to be difficult. Thus analyzing power system stability through computer modeling and simulation proves to be a viable solution in this case. The motivation of this project is to construct and analyze the load flow and short circuit behavior in an IEEE 14 bus power system with DC link using MATLAB software. This involves determining the parameters for converter transformer, rectifier, inverter and DC cable for modelling the DC link. The line chosen for incorporation of DC link is a weak bus. This project gives the results of load flow and along with comparison of reactive power flow, system losses, voltage in an AC and an AC-DC system.


JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 55
Author(s):  
Rohmanita Duanaputri ◽  
Imron Ridzki ◽  
Egar Rahmat Maulana ◽  
Ayusta Lukita Wardani

  Kestabilan suatu sistem tenaga listrik sendiri merupakan kemampuan sebuah sistem tenaga listrik dalam mempertahankan tegangan, frekuensi, dan daya di setiap bus sistem interkoneksi pada kondisi normal baik sebelum dan sesudah terjadinya gangguan. Sistem akan memasuki keadaan ketidakstabilan ketika terjadi gangguan, peningkatan permintaan beban dan adanya perubahan kondisi sistem, keadaan tersebut akan menyebabkan penurunan performa sistem tenaga listrik. Pada tahun 2015-2019 pulau madura hanya terdapat lima gardu induk, seiring dengan pertambahan kebutuhan tenaga listrik di beberapa wilayah pulau madura, untuk memperbaiki mutu dan keandalan penyaluran tenaga listrik ke konsumen, hal inilah yang mendukung proyek penambahan Gardu Induk Guluk Guluk. Gardu Induk Guluk-Guluk merupakan salah satu bagian dari sub sistem Krian Gresik. Dengan adanya penambahan Gardu Induk Guluk-Guluk tersebut akan berpengaruh terhadap aliran daya dan tegangan pada sistem tenaga listrik. Analisis dilakukan pada kondisi normal sebelum dan setelah adanya Gardu Induk Guluk-Guluk. Kondisi tegangan pada sub sistem Krian Gresik saat sebelum dan sesudah pembangunan Gardu Induk Guluk-Guluk masih memenuhi standart, namun ada beberapa bus yang mengalami penurunan tegangan dibawah 95%. Gardu Induk yang mengalami penurunan tegangan dibawah 95% sebelum pembangunan Gardu Induk Guluk-Guluk, yaitu pada Gardu Induk Bunduran, Gardu Induk Porong, dan Gardu Induk Maspion. Saat setelah pembangunan Gardu Induk Guluk-Guluk, terdapat penambahan Gardu induk yang mengalami penurunan nilai tegangan, yaitu Gardu Induk Sampang, Gardu Induk Pamekasan, Gardu Induk Guluk-Guluk, dan Gardu Induk Sumenep. Aliran daya terbesar saat terjadi penurunan tegangan adalah pada bus Bus 1 Bunduran. The stability of an electric power system itself is the ability of an electric power system to maintain the voltage, frequency, and power in each interconnecting bus system in normal conditions both before and before the disturbance. The system will enter a state of instability when there is a disturbance, an increase in load demand and a change in system conditions, this situation will cause a decrease in the performance of the electric power system. In 2015-2019 Madura Island there are five substations, along with the increasing need for energy in the Madura Island area, to improve some and control electric power, this is what supports the addition of Guluk-Guluk Substations. Guluk-Guluk Substation is one part of the Krian Gresik sub-system. With the addition of the Guluk-Guluk Substation, it will affect the flow of power and voltage in the electric power system. The analysis was carried out under normal conditions before and after the Guluk-Guluk Substation. The voltage conditions in the Krian Gresik sub-system before and before the construction of the Guluk-Guluk Substation still met the standard, but there were several buses that experienced a voltage drop below 95%. Substations that experienced a voltage drop below 95% before the construction of the Guluk-Guluk Substations, namely the Bunduran Substation, Porong Substation, and Maspion Substation. After the construction of the Guluk-Guluk Substation, there were additional substations that experienced a decrease in voltage values, namely the Sampang Substation, Pamekasan Substation, Guluk-Guluk Substation, and Sumenep Substation. The largest power flow when there is a voltage drop is on the Bus 1 Bunduran.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Choong-Koo Chang

In order to supply electric power to the safety related loads, safety and reliability of onsite power have to be ensured for the safety function performance in nuclear power plants. Even though the existing electric power system of APR1400 meets the requirements of codes regarding Class 1E system, there is a room for improvement in the design margin against the voltage drop and short circuit current. This paper discusses the amount that the voltage drop and short circuit current occur in the existing electric power system of APR1400. Additionally, this paper studies with regard to the improved model that has the extra margin against the high voltage drop and short circuit current by separation of unit auxiliary transformer (UAT) and standby auxiliary transformer (SAT) for the Class 1E loads. The improved model of the electric power system by separation of UAT and SAT has been suggested through this paper. Additionally, effects of reliability and cost caused by the electric power system modification are considered.


Author(s):  
Ahmed Zkear Abass

<p><span>Iraq is facing deficiency of electric power for last decades. The main reason for deficiency of electric power is due to less respect of analytical load flow studies of electric supply substation. To stop and overcome such situation in future, researchers should be analyzing different power substation focusing on load flow studies, short circuit studies and protection schemes. Due to lack of research and studies on load flow and fault analysis, Iraq is facing a lot of issues, such as power failures and high copper losses, solving of these problems on substation level, demand a high familiarity about the power system. In this paper we analyses combined typical gas station with solar thermal power station and survey load flow, short circuit, transient stability, and voltage drop before and after combined station by using electrical transient analyzer program (ETAP). Now a day’s power supply reliability and goodness are big interest. analyses of power system are a main part in power system designing and planning, in order to accommodate future loads and the expansion of cities.</span></p>


Author(s):  
Hayatul Harifin ◽  
Novalio Daratha ◽  
M. Khairul Amri Rosa

AbstractLoad flow analysis is a study to plan and determine the amount of power in an electric power system. During its development, industry requires a large amount of electric power and uses electrical equipment as a means of production. The benefits of an electric load flow analysis are to find out the amount of power in the electric power system whether it still meets predetermined limits, and to find out the amount of voltage at each point, and to obtain initial conditions for the new system planning. Load flow analysis begins calculating the active power and reactive power at each node (bus) installed, loading on the channel or conductor, the load flow calculation will be assisted using the Julia program. From the results of calculations using the Julia program, the voltage at each point with the smallest stress is obtained, namely the 10th point of 209.89 - j10.34V for phase A, -107.39 - j186.87V for phase B, -108.12 + j178,51V for phase CKey Words: Drop Voltage, Julia, Load Flow


Author(s):  
Muhardika Muhardika ◽  
Syahroni Syahroni

Power flow analysis aims to determine the capacity of a generator to serve loads, to know the value of power losses in the electrical system, and to carry out a planning and development of the electric power system. Power flow analysis is carried out in order to find out the characteristics of the electric power system to be built or to be developed as desired. In this study, power flow analysis and short circuit analysis were carried out in the electrical system of Andalas University with 2 conditions, namely, when the conditions were normal or when the Distributed Generation was not added and when the conditions were added, the Distributed Generation (DG) Photovoltaic 300 kW. The results of this study indicate the largest system losses when normal conditions are on bus 1 to bus 2 amounting to 20.21 kW and 6.13 kVar, and when conditions add DG on bus 17 to bus 18 are 230.8 kW and 142.7 kVar. The results of the short circuit analysis of the two conditions are on bus 1 when the condition is experiencing the addition of DG with an increase in average current, namely 1 soil phase of 0.86 kA, 2 phases of 0.175 kA, 2 soil phases of 0.09609 kA, and 3 phases of 0.085273 kA from when the conditions were normal. Keywords : Power Flow Analysis, Short Circuit Analysis, Photovoltaic, Wind Turbine


Author(s):  
Robi Kurniawan ◽  
Ardiansyah Nasution ◽  
Arnawan Hasibuan ◽  
Muzamir Isa ◽  
Muskan Gard ◽  
...  

Distributed Generation (DG) is a small capacity generator located in the electricity distribution system and is usually placed on buses that are connected directly to the load. Placement of distributed generation is one of the technical efforts to reduce voltage drop and power losses in the system. In addition, load flow analysis is a study to plan and determine the amount of power in an electric power system. The results of power losses after adding distributed generation were the best in the fifth experiment on bus 149, where the system experienced a total loss of active power (P) previously of 720,822 kW, to 682,939 kW and total loss of reactive power (Q) previously of 530.02 kVar, to 405.835 kVar. From the results of the calculation of the power flow using ETAP software (Electrical Transient Analyzer Program). So, it can be concluded that the electrical network system can be said to be good. The results obtained are the more DG (wind turbine generator) that is input into the bus it will reduce the voltage drop that occurs. After simulating the overall voltage drop, it still meets the standards according to the results of the Text Report on ETAP.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


Sign in / Sign up

Export Citation Format

Share Document