scholarly journals A Novel Methodology for Adaptive Coordination of Multiple Controllers in Electrical Grids

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.

2019 ◽  
Vol 10 (1) ◽  
pp. 35-41
Author(s):  
Dwi Ajiatmo ◽  
Imam Robandi ◽  
Machrus Ali ◽  
Betta Aidya Suroya

Short circuit is one type of interference that often occurs in electric power systems. The interference if it lasts a long time will affect the quality and continity of electrical power distribution as well as the reliability and safety of the equipment on the system. To minimize the possibility of interference and to minimize the consequences caused by interference, an analysis of disturbances in the electric power system is needed. This study discusses the classification and analysis of disturbances in the electric power system. The type of interference in the electric power system is classified into two, namely symmetry and non-symmetrical interference. Symmetry disturbances are three phase disturbances which are described by the equation of the sequence of the symmetry component system. Sequence equations from the symmetry component system are positive sequence equations, negative sequence equations, and zero sequence equations. Non-symmetrical interference is a disorder that often occurs in electric power systems, namely the interference of one network to the ground, network interference to the network and interference of two networks to the ground. This research is to classify and to analyze the types of disturbances in the Java-Bali electric power system 500 kV 20 buses in the form of a single line diagram, using Power World Simulator and ETAP Software applications. The simulation results are calculated and display the simulation design of the power system with the tools contained in the program.


2020 ◽  
Vol 12 (22) ◽  
pp. 9698
Author(s):  
Habibollah Raoufi ◽  
Vahid Vahidinasab ◽  
Kamyar Mehran

Recently, there has been a focus on natural and man-made disasters with a high-impact low-frequency (HILF) property in electric power systems. A power system must be built with “resilience” or the ability to withstand, adapt and recover from disasters. The resilience metrics (RMs) are tools to measure the resilience level of a power system, normally employed for resilience cost–benefit in planning and operation. While numerous RMs have been presented in the power system literature; there is still a lack of comprehensive framework regarding the different types of the RMs in the electric power system, and existing frameworks have essential shortcomings. In this paper, after an extensive overview of the literature, a conceptual framework is suggested to identify the key variables, factors and ideas of RMs in power systems and define their relationships. The proposed framework is compared with the existing ones, and existing power system RMs are also allocated to the framework’s groups to validate the inclusivity and usefulness of the proposed framework, as a tool for academic and industrial researchers to choose the most appropriate RM in different power system problems and pinpoint the potential need for the future metrics.


2008 ◽  
Vol 18 (05) ◽  
pp. 1415-1424 ◽  
Author(s):  
SHAO-HUA LI ◽  
HSIAO-DONG CHIANG

A structure-induced bifurcation of nonsmooth nonlinear systems is studied and illustrated on electric power system models. The consequence of structure-induced bifurcation is an immediate instability induced by generator reactive power limits. It is numerically shown that structure-induced bifurcation can occur at both small power systems and large-scale power systems. Without taking the structure-induced bifurcation into account in defining power system operating limits, the resulting operating limits can be overly optimistic.


2019 ◽  
Vol 10 (1) ◽  
pp. 35-41
Author(s):  
Dwi Ajiatmo ◽  
Imam Robandi ◽  
Machrus Ali

Short circuit is one type of interference that often occurs in electric power systems. The interference if it lasts a long time will affect the quality and continity of electrical power distribution as well as the reliability and safety of the equipment on the system. To minimize the possibility of interference and to minimize the consequences caused by interference, an analysis of disturbances in the electric power system is needed. This study discusses the classification and analysis of disturbances in the electric power system. The type of interference in the electric power system is classified into two, namely symmetry and non-symmetrical interference. Symmetry disturbances are three phase disturbances which are described by the equation of the sequence of the symmetry component system. Sequence equations from the symmetry component system are positive sequence equations, negative sequence equations, and zero sequence equations. Non-symmetrical interference is a disorder that often occurs in electric power systems, namely the interference of one network to the ground, network interference to the network and interference of two networks to the ground. This research is to classify and to analyze the types of disturbances in the Java-Bali electric power system 500 kV 20 buses in the form of a single line diagram, using Power World Simulator and ETAP Software applications. The simulation results are calculated and display the simulation design of the power system with the tools contained in the program.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ju Liu ◽  
Wei Yao ◽  
Jinyu Wen ◽  
Haibo He ◽  
Xueyang Zheng

Nowadays, low frequency oscillation has become a major problem threatening the security of large-scale interconnected power systems. According to generation mechanism, active power oscillation of electric power systems can be classified into two categories: free oscillation and forced oscillation. The former results from poor or negative damping ratio of power system and external periodic disturbance may lead to the latter. Thus control strategies to suppress the oscillations are totally different. Distinction from each other of those two different kinds of power oscillations becomes a precondition for suppressing the oscillations with proper measures. This paper proposes a practical approach for power oscillation classification by identifying real-time power oscillation curves. Hilbert transform is employed to obtain envelope curves of the power oscillation curves. Twenty sampling points of the envelope curve are selected as the feature matrices to train and test the supporting vector machine (SVM). The tests on the 16-machine 68-bus benchmark power system and a real power system in China indicate that the proposed oscillation classification method is of high precision.


2013 ◽  
Vol 2 (4) ◽  
pp. 44-58 ◽  
Author(s):  
E. V. Markova ◽  
I. V. Sidler ◽  
V. V. Trufanov

The first part of the paper is devoted to the problem of optimal control in the area of electric power industry which is described on the basis of a one-sector variant of Glushkov integral model of developing systems. The authors consider the ways uncertain conditions of future electric power system development influence the optimal service life. The results of calculations for the Unified Electric Power System of Russia are presented and analyzed. The second part of the paper deals with the application of Prony method to identification of the Volterra equations in the two-sector models of developing systems. The authors suggest a numerical method for identifying the efficiency function parameters. An illustrative example is given.


2019 ◽  
Vol 24 ◽  
pp. 02012
Author(s):  
Yury Shornikov ◽  
Evgeny Popov

Transients in electric power systems are of great interest to power engineers when designing a new or maintaining an existing system. The paper deals with using hybrid system theory for modeling and simulation of an electric power system with controllers. The presented technique is rather convenient and recommended as mathematical models of transients in electric power systems with controllers in general contain both continuous and discrete components. The modeling and simulation were carried out in the modeling and simulation environment ISMA, which is briefly presented in the paper.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3343 ◽  
Author(s):  
Jiyoung Song ◽  
Seungchan Oh ◽  
Jaegul Lee ◽  
Jeonghoon Shin ◽  
Gilsoo Jang

The purpose of this paper is to introduce, examine, and evaluate the industrial experiences and effectiveness of a Thyristor Controlled Series Compensator (TCSC) replica controller installed in Korea in 2019 through a review of its configuration, test platform, and practical application, and further to propose operational guidelines for replica controllers. Four representative practical cases were conducted: a Dynamic Performance Test (DPT) under a sufficiently large-scale power system prior to the Site Acceptance Test (SAT), pre-verification for on-site controller modification during operation stage, parameter tuning to mitigate the control interaction, and time domain simulation for Sub-Synchronous Torsional Interaction (SSTI). None of these four cases can be performed in a Factory Acceptance Test (FAT) or on-site. Therefore, TCSC control performance was accurately verified under the entire Korean power system based on a large-scale real-time simulator, which demonstrated its effectiveness as a powerful tool for operations including multiple power electronics devices. Our review herein of these four practical cases is expected to show the usefulness of replica controllers, to demonstrate their strength to deal with practical field events, and to contribute to the further expansion of the application area from a perspective of electric utility.


Sign in / Sign up

Export Citation Format

Share Document