scholarly journals Particular aspects regarding the effects of whole body vibration exposure

2018 ◽  
Vol 148 ◽  
pp. 09005 ◽  
Author(s):  
Mihaela Picu ◽  
Laurentiu Picu

This paper analyses the influence of whole-body vibrations on human performance; for this it was investigated how a group of men (20-29 years of age) and a group of woman (21–31 years of age) answered to specific requirements after being subjected to vertical vibrations under controlled laboratory conditions for 10-25 min. The vibrations were generated by a vibrant system with known amplitudes and frequencies. Accelerations were measured with NetdB - complex system for measuring and analysing human vibration and they were found in the range 0.4 - 3.1m/s2. The subjects’ performances were determined for each vibration level using specific tests. It can be concluded that exposure to vibrations higher than those recommended by ISO 2631 significantly disrupts how subjects responded to tests requirements.

2018 ◽  
Vol 4 (1) ◽  
pp. 56-66
Author(s):  
M. Cvetkovic ◽  
J. Santos Baptista ◽  
M. A. Pires Vaz

The whole-body vibration occurs in many occupational activities, promoting discomfort in the working environment and inducing a variety of psycho – physical changes where consequences as a permanent dysfunction of certain parts of the organism may occur. The main goal of this short systematic review is finding the articles with the most reliable results relating whole-body vibrations to buses and, to compare them with the results of drivers’ lower limbs musculoskeletal disease which occurs as a consequence of many year exposure. PRISMA Statement Methodology was used and thereby 27 Scientific Journals and 25 Index - Database were searched through where 3996 works were found, of which 24 were included in this paper. As a leading standard for analysis of the whole-body vibration the ISO 2631 – 1 is used, while in some papers as an additional standard the ISO 2631-5 is also used for the sake of better understanding the vibrations. Furthermore, the European Directive 2002/44 / EC is included where a daily action exposure to the whole-body vibrations is exactly deter-mined. All the results presented in the paper were compared with the aforesaid standards. After having searched the databases, papers that deal with research of the impact of the vibration on the driver’s lower limbs did not contain any information’s on the described problem.


2009 ◽  
Vol 39 (5) ◽  
pp. 708-718 ◽  
Author(s):  
Hsieh-Ching Chen ◽  
Wei-Chyuan Chen ◽  
Yung-Ping Liu ◽  
Chih-Yong Chen ◽  
Yi-Tsong Pan

2012 ◽  
Vol 43 (1) ◽  
pp. 268-269 ◽  
Author(s):  
Ren G. Dong ◽  
Daniel E. Welcome ◽  
Thomas W. McDowell

2017 ◽  
Vol 24 (5) ◽  
pp. 375-382
Author(s):  
Fábio Celso Oliveira ◽  
Geice Paula Villibor ◽  
Joseph Kalil Khoury Junior ◽  
Éder Harisson Ferreira Lima

Off-road vehicles, baja type, are designed for locomotion on irregular terrains with several obstacles, to pull loads with effciency, furthermore, are compact and easy to operate. Such vehicles have wide use in agriculture, construction, transportation and military operations. Baja vehicle provide to pilot an exposure to high levels of mechanical vibrations. With the present work aimed to determine the whole body vibration and hand-arm vibration in the pilot using the vehicle designed by UFVbaja team. The vibrations levels incident on the pilot was measured in three different terrain conditions and different forward speeds. It was determinate the root mean square acceleration and daily vibration exposure at the seat pad and hand-arm of pilot. For whole body vibration was obtained the daily vibration dose value. The values were confronted with standards ISO 2631-1. The acceleration level, normalized to 8 hour, exceeded the warning limits for all worked conditions. To Baja vehicle operating in plowing soil, the transverse and vertical accelerations exceeded the limit level. In general, incident acceleration levels on the pilot were considered high, which reinforces the need for seats projects of suspension, steering and seat that effectively reduce the vibration transmitted to pilot body and hand-arm system.


Author(s):  
Luz S. Marin ◽  
Andrés Rodriguez ◽  
Estefany Rey ◽  
Lope H. Barrero ◽  
Jack Dennerlein ◽  
...  

This study aimed to characterize and contrast the ISO 2631-1 daily average-continuous A(8) and cumulative-impulsive VDV(8) whole body vibration (WBV) exposures during the operation of mining heavy equipment vehicles (HEVs). In a cross-sectional study, WBV measurements were collected from six different types of HEVs. For each HEV, the daily A(8) and VDV(8) WBV exposures were determined for each axis (x, y and z) along with the vector sum (∑xyx).. The predominant axis of vibration exposure was related to and dependent on the type of HEV, which all have different average speeds. Most of the predominant axis WBV exposures were above the ISO daily vibration action limits and the vector sum-based WBV exposures were considerably higher. Our results indicated that mining HEV operators are exposed to high levels of both continuous and impulsive WBV exposures, with the impulsive WBV exposures being more restrictive with respect the HEVs daily maximum operation hours.


Author(s):  
X. Y. Xie ◽  
R. B. Bhat ◽  
P.-E. Boileau

Abstract The human body behaves like a vibrating physical system having mass, elastic and damping properties. In order to study the biodynamic behavior of the body, it is common practice to model the body as a lumped single or a multiple-degree-of-freedom (MDOF) system. Standards have been developed using the frequency-weighted root-mean-square (rms) acceleration input to the body as the primary measure of whole-body vibration exposure. In this paper, absorbed power during exposure to vertical whole-body vibration is considered as a potential indicator of the physical stress affecting comfort and health. A four-degree-of-freedom biodynamic model is chosen to represent the body and the absorbed power for the different body segments and the total body is computed. On the basis of the model and of the guidance provided in ISO 2631-1:1997 relating vibration exposure with health risk, computations are carried out to define a health guidance caution zone based on absorbed power.


Sign in / Sign up

Export Citation Format

Share Document