absorbed power
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 57)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Shawutijiang Sidikejiang ◽  
Philipp Henning ◽  
Philipp Horenburg ◽  
Heiko Bremers ◽  
Uwe Rossow ◽  
...  

Abstract We compare the low-temperature photoluminescence (PL) intensities of a range of GaInN/GaN quantum well (QW) structures under identical excitation conditions, mounting the samples side by side. Normalizing the measured intensity to the absorbed power density in the QWs, we find that low-temperature PL efficiencies of several samples, which show close to 100% IQE in time-resolved PL, saturate at nearly an identical value. Of course, this is strong indicative of being 100% IQE at low temperature for those efficient samples. Using the low-temperature PL efficiency as a ``Reference'', on the other hand, we observe not only the effects of temperature-independent non-radiative losses on the low-temperature IQE, but also are able to determine the IQE of arbitrary samples on an absolute scale. Furthermore, we prove the experimental results by comparing the low-temperature efficiencies of a sample with an initial 100% IQE after intentionally introducing structural defects with argon-implantation.


2022 ◽  
Vol 92 (1) ◽  
pp. 92
Author(s):  
С.Ю. Зуев ◽  
А.Я. Лопатин ◽  
В.И. Лучин ◽  
Н.Н. Салащенко ◽  
Д.А. Татарский ◽  
...  

We demonstrate the possibility of manufacturing Be-based ultrathin films with high transmission at wavelengths of 11.4 and 13.5 nm. For free-standing films of Be and Be-based multilayer structures (Si/Be, ZrSi2/Be, Be/BexNy, Zr/Be, Ru/Be, Mo/Be), we determine the thresholds of the absorbed power at which over a short period (tens of minutes) of vacuum annealing, initially sagging free-standing films became visibly stretched over the hole. Of the film structures tested here, the Be/BexNy structure (with beryllium nitride interlayers) showed the highest threshold for the absorbed power (1 W/cm2). However, due to the low strength of this structure, ZrSi2/Be, Mo/Be, and Be films seem to be more promising for the manufacture of a full-size pellicle. Long-term vacuum annealing of Mo/Be and Be ultrathin films showed that they could withstand 24 hours of vacuum heating at an absorbed power density of 0.2 W/cm2 (film temperature ~250°C) without noticeable changes in EUV transmission or sagging of films. With comparable transmission (~83% at 13.5 nm and ~88% at 11.4 nm), a multilayer Mo/Be structure with a thickness of 30 nm appears to be preferable, as it shows less brittleness than a monolayer Be film with a thickness of 50 nm.


2022 ◽  
Vol 924 (2) ◽  
pp. L25
Author(s):  
Jinyi Yang ◽  
Xiaohui Fan ◽  
Feige Wang ◽  
Giorgio Lanzuisi ◽  
Riccardo Nanni ◽  
...  

Abstract We report X-ray observations of the most distant known gravitationally lensed quasar, J0439+1634 at z = 6.52, which is also a broad absorption line (BAL) quasar, using the XMM-Newton Observatory. With a 130 ks exposure, the quasar is significantly detected as a point source at the optical position with a total of 358 − 19 + 19 net counts using the EPIC instrument. By fitting a power law plus Galactic absorption model to the observed spectra, we obtain a spectral slope of Γ = 1.45 − 0.09 + 0.10 . The derived optical-to-X-ray spectral slope α ox is − 2.07 − 0.01 + 0.01 , suggesting that the X-ray emission of J0439+1634 is weaker by a factor of 18 than the expectation based on its 2500 Å luminosity and the average α ox versus luminosity relationship. This is the first time that an X-ray weak BAL quasar at z > 6 has been observed spectroscopically. Its X-ray weakness is consistent with the properties of BAL quasars at lower redshift. By fitting a model including an intrinsic absorption component, we obtain intrinsic column densities of N H = 2.8 − 0.6 + 0.7 × 10 23 cm − 2 and N H = 4.3 − 1.5 + 1.8 × 10 23 cm − 2 , assuming a fixed Γ of 1.9 and a free Γ, respectively. The intrinsic rest-frame 2–10 keV luminosity is derived as (9.4–15.1) × 1043 erg s−1, after correcting for lensing magnification (μ = 51.3). The absorbed power-law model fitting indicates that J0439+1634 is the highest redshift obscured quasar with a direct measurement of the absorbing column density. The intrinsic high column density absorption can reduce the X-ray luminosity by a factor of 3–7, which also indicates that this quasar could be a candidate intrinsically X-ray weak quasar.


2021 ◽  
Vol 923 (2) ◽  
pp. 249
Author(s):  
Jeremy Hare ◽  
Igor Volkov ◽  
George G. Pavlov ◽  
Oleg Kargaltsev ◽  
Simon Johnston

Abstract We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the young, energetic pulsar PSR J1617–5055. Parkes Observatory 3 GHz radio observations of the pulsar (taken about 7 yr before the NuSTAR observations) are also reported here. NuSTAR detected pulsations at a frequency of f ≈ 14.4 Hz (P ≈ 69.44 ms) and, in addition, the observation was long enough to measure the source’s frequency derivative, f ̇ ≈ − 2.8 × 10 − 11 Hz s−1. We find that the pulsar shows one peak per period at both hard X-ray and radio wavelengths, but that the hard X-ray pulse is broader (having a duty cycle of ∼0.7), than the radio pulse (having a duty cycle of ∼0.08). Additionally, the radio pulse is strongly linearly polarized. J1617's phase-integrated hard X-ray spectrum is well fit by an absorbed power-law model, with a photon index Γ = 1.59 ± 0.02. The hard X-ray pulsations are well described by three Fourier harmonics, and have a pulsed fraction that increases with energy. We also fit the phase-resolved NuSTAR spectra with an absorbed power-law model in five phase bins and find that the photon index varies with phase from Γ = 1.52 ± 0.03 at phases around the flux maximum to Γ = 1.79 ± 0.06 around the flux minimum. Last, we compare our results with other pulsars whose magnetospheric emission is detected at hard X-ray energies and find that, similar to previous studies, J1617's hard X-ray properties are more similar to the MeV pulsars than the GeV pulsars.


2021 ◽  
Vol 10 (6) ◽  
pp. 3282-3288
Author(s):  
Hamood Shehab Hamid ◽  
Raad Farhood Chisab

In this work, a numerical calculation was carried out in one of the universal programs for automatic electro-dynamic design. The calculation is aimed at obtaining numerical values for specific absorbed power (SAR). It is the SAR value that can be used to determine the effect of the antenna of a wireless device on biological objects; the dipole parameters will be selected for GSM1800. Investigation of the influence of distance to a cell phone on radiation shows that absorbed in the head of a person the effect of electromagnetic radiation on the brain decreases by three times this is a very important result the SAR value has decreased by almost three times it is acceptable results.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7892
Author(s):  
Tatiana Potapenko ◽  
Joseph Burchell ◽  
Sandra Eriksson ◽  
Irina Temiz

Two different concepts of wave energy converter coupled to the novel C-GEN linear generator have been studied numerically, including the evaluation of different buoy sizes. The first concept has a slack connection between the buoy and the generator on the seabed. Another concept is based on a stiff connection between the buoy and the generator placed on an offshore platform. Three different approaches to calculate the damping force have been utilized within this study: the optimal damping coefficient, R-load, and RC-load. R-load is a model for the load applied to a grid-connected generator with passive rectification. RC-load is a model for a phase angle compensation applied to a system with active rectification. The radiation forces originating from the oscillatory motion of the buoy have been approximated using the transfer function in the frequency domain and the vector fitting algorithm. A comparison of the approximation methods is presented, and their accuracy has been evaluated. The advantage of the vector fitting method has been shown, especially for higher approximation orders which fit the transfer function with high accuracy. The study’s final results are shown in terms of the absorbed power for the sea states of March 2018 at Wave Hub, UK.


Author(s):  
Kryštof Mrózek ◽  
Tomáš Dytrych ◽  
Pavel Moliš ◽  
Vladimír Dániel ◽  
Adam Obrusník

Abstract This work presents a global plasma model of a gridded air-breathing electric propulsion concept based on electron-cyclotron resonance plasma operating in the pressure range of 10-3 Pa to 1 Pa. We illustrate that the global plasma model reproduces the experimental measurements of extracted current over two orders of magnitude in pressure. Consequently, we use the model to investigate the theoretical scalability of the plasma source, finding out that the plasma source performance scales reasonably well with the average absorbed power per molecule, even though this scaling factor has its limits. The global model presented in this work is a model of a specific laboratory device and, in future, it can be adapted to very low Earth orbit conditions by adjusting the boundary conditions. The model was implemented using PlasmaSolve p3s-globalmodel software and the configuration file containing all the equations is provided to the community as supplementary material.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012018
Author(s):  
M B Jouybari ◽  
Y Xing

Abstract Designing a wave energy converter with the proper size has always been challenging since it is a trade-off between many factors including cost, practicality, and energy output. In this paper a practical design procedure for sizing of heaving point absorbers wave energy converters is presented. Size can be represented by the body volume. Budal power bounds are deployed to obtain the body volume and annual mean absorbed power of the wave energy converter. Budal power bounds are determined for each sea state. Aiming a specific power capture ratio, several sets of design sea states with related design volume and annual mean absorbed power are defined. With the design objective of maximizing the ratio of mean power to submerged volume, and considering suitable design constraints, the best size is obtained. The proposed procedure will be then deployed for a case study and the design will be compared with an existing similar point absorber. The results show that the mean absorbed power does not depend on the size but is a function of selected sea states. Furthermore, the comparison study reveals that the proposed design procedure yields reasonable power characteristics.


2021 ◽  
Vol 9 (10) ◽  
pp. 1136
Author(s):  
Jinming Wu

The objective of this work is to identify the maximum absorbed power and optimal buoy geometry of a heaving axisymmetric point absorber for a given cost in different sea states. The cost of the wave energy converter is estimated as proportional to the displaced volume of the buoy, and the buoy geometry is described by the radius-to-draft ratio. A conservative wave-height-dependent motion constraint is introduced to prevent the buoy from jumping out of the free surface of waves. The constrained optimization problem is solved by a two-nested-loops method, within which a core fundamental optimization process employs the MATLAB function fmincon. Results show that the pretension of the mooring system should be as low as possible. Except for very small energy periods, the stiffness of both the power take-off and mooring system should also be as low as possible. A buoy with a small radius-to-draft ratio can absorb more power, but at the price of working in more energetic seas and oscillating at larger amplitudes. In addition, the method to choose the optimal buoy geometry at different sea states is provided.


Author(s):  
Filippo Cataldo ◽  
Yuri Carmelo Crea

Abstract In an era of ever-growing digitalisation, the absorbed power of processing units is becoming an actual challenge for cooling systems. The effectiveness is imperative, but compactness and passiveness are driving factors in the design as well. The goal of the present paper is twofold: 1) to present a detailed experimental campaign on a thermosyphon system for high-heat-load electronics; 2) to propose a model of the thermosyphon system using a Machine Learning approach. The thermosyphon system is composed of a micro-channel evaporator plate directly attached to the heat-generating device and an air-cooled multiport condenser. The height between the evaporator and condenser inlets is 12 cm. The condenser is also proposed in two solutions: the first one has a footprint heat exchange area of 180 x 120 mm2, which allows a single fan's placement; the second one has a footprint area of 240x120 mm2, allowing the placement of two fans. The working fluid used in the system is R1234ze(E) with different charges. The experimental results show that the single-fan condenser reached a maximum heat rejection of 330 W, corresponding to a heat flux of 21.9 W/cm2. The double-fan condenser bore a maximum heat rejection of 570 W (37.7 W/cm2). The model, constructed purely via a Machine Learning tool, shows a very satisfactory agreement between experimental and predicted data.


Sign in / Sign up

Export Citation Format

Share Document