scholarly journals An Energy Loss Calculating Method for Wind Power System Based on the Shape Factor

2018 ◽  
Vol 160 ◽  
pp. 03007
Author(s):  
Bo Ruan ◽  
Junjie Qian ◽  
Dahai You ◽  
Tingting Hou ◽  
Xi Chen ◽  
...  

The large-scale access of the new energy makes various changes to the power system characteristics. For example, the acute volatility of the new energy such as wind power and photovoltaic energy makes the power-loss-calculation for the system more complex. The traditional typical daily method is inaccurate when used in new energy system because of its overlook of the generator output volatility. This paper proposes a new power-loss-calculation method for wind power system which based on the shape factor and gain a more accurate result. On the basis of this new calculating method, finds that the shape factor of the wind power plant for an hour period usually falls in a certain range. Therefore, proposes to directly use the expectation of shape factor in whole year to compute the annual energy loss with at least two values and once power flow calculation. And the acceptable relative error proves its large engineering practicability.

2021 ◽  
Author(s):  
Xinyu Wang ◽  
Jingyuan Liu ◽  
Pengwei Yang ◽  
Zheng Ren ◽  
Bowen Zheng ◽  
...  

2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


2013 ◽  
Vol 380-384 ◽  
pp. 3051-3056 ◽  
Author(s):  
Xiao Dan Wu ◽  
Wen Ying Liu

In this paper, starting from the active network loss formulas and wind characteristics, it is pointed out the reactive power loss and reactive flow is the major impact of wind power integration on power system loss. The reactive power loss formulas of box-type transformer, main step-up transformer, wind farm collector line and connecting grid line are analyzed. Next the reactive power loss of transformer and transmission line is described in detail. Then put forward the loss reduction measures that installing SVC on the low voltage side of the main step-up transformer and making the doubly-fed wind generators send out some reactive power at an allowed power factor. Use the case of Gansu Qiaodong wind farm to verify the effectiveness of the proposed measures.


2021 ◽  
Vol 252 ◽  
pp. 02001
Author(s):  
Ping He ◽  
Mingming Zheng ◽  
Zhao Li ◽  
Qiyuan Fang ◽  
Xiaopeng Wu

The new energy represented by strong random wind power connecting to the power system may make the problem of inter-area low-frequency oscillation more serious. In this paper, a DFIG-PSS controller based on virtual impedance is constructed to solve the low-frequency oscillation problem in the wind power system. The step response of PSS-VI was carried out to test the effect of the controller to verify the advantages of PSS-VI than traditional PSS. The input signal of PSS-VI which is a controller based on PSS installed virtual impedance is the active power of DFIG. The output signal of PSS-VI is added to the reactive power control loop of rotor side controller of DFIG. DFIG-PSS-VI was built in Digsilent/Powerfactory software, and the simulation was carried out on the system of 4 machines and 2 regions. It is verified that PSS-VI can improve the low-frequency oscillation of wind power system.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Han Wang ◽  
Shuang Han ◽  
Yongqian Liu ◽  
Aimei Lin

The wind speed sequences at different spatial positions have a certain spatiotemporal coupling relationship. It is of great significance to analyze the clustering effect of the wind farm(s) and reduce the adverse impact of large-scale wind power integration if we can grasp this relationship at multiple scales. At present, the physical method cannot optimize the time-shifting characteristics in real time, and the research scope is concentrated on the wind farm. The statistical method cannot quantitatively describe the temporal relationship and the speed variation among wind speed sequences at different spatial positions. To solve the above problems, a quantification method of wind speed time-shifting characteristics based on wind process is proposed in this paper. Two evaluation indexes, the delay time and the decay speed, are presented to quantify the time-shifting characteristics. The effectiveness of the proposed method is verified from the perspective of the correlation between wind speed sequences. The time-shifting characteristics of wind speed sequences under the wind farms scale and the wind turbines scale are studied, respectively. The results show that the proposed evaluation method can effectively achieve the quantitative analysis of time-shifting and could improve the results continuously according to the actual wind conditions. Besides, it is suitable for any spatial scale. The calculation results can be directly applied to the wind power system to help obtain the more accurate output of the wind farm.


2014 ◽  
Vol 986-987 ◽  
pp. 551-555
Author(s):  
Hong Wei Li ◽  
Gui Chen

In view of the teaching requirements of the new curriculums about new energy power generation technology in electrical engineering field, this paper has proposed and designed a rated 3kW wind power system under the environment of PSIM9.0 software. Through systematically analyzing the mathematics and theory knowledge of the small and medium sized permanent-magnet direct-drive wind power system (PDWPS for short), the wind power system model has been built and the back-to-back double-PWM control circuit has been designed. Then the whole PDWPS has been established based on PSIM. The simulation results show that, when the wind speed changes, the output power of the generator is stable and the DC voltage of the inverter is constant. The results prove that the control strategy is correct and valid. As a powerful auxiliary teaching tool, PSIM can be used to strengthen student's understanding of theoretical knowledge and improve the students' learning interest and enthusiasm. The contents in this paper provide a new method to the teaching and practice in electrical engineering courses.


2007 ◽  
Vol 2007 (0) ◽  
pp. 231-232
Author(s):  
Terumi INAGAKI ◽  
Kiichiro KOSONO ◽  
NUR AKMAL BINTI HANIFFAH

Sign in / Sign up

Export Citation Format

Share Document