Voltage control strategy with stepped controllable shunt reactor in large-scale wind power system

Author(s):  
Lin Zhang ◽  
Baozhu Liu ◽  
Hong Shen ◽  
Xiaohui Qin
2021 ◽  
Author(s):  
Xinyu Wang ◽  
Jingyuan Liu ◽  
Pengwei Yang ◽  
Zheng Ren ◽  
Bowen Zheng ◽  
...  

2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7685
Author(s):  
Xiangwu Yan ◽  
Wenfei Chang ◽  
Sen Cui ◽  
Aazim Rassol ◽  
Jiaoxin Jia ◽  
...  

A large-scale power system breakdown in the United Kingdom caused blackouts in several important cities, losing about 3.2 percent of the load and affecting nearly 1 million power users on 9 August 2019. On the basis of the accident investigation report provided by the UK National Grid, the specific reasons for the sub-synchronous oscillation of Hornsea wind farm were analyzed. The Hornsea wind power system model was established by MATLAB simulation software to reproduce the accident. To solve this problem, based on the positive and negative sequence decomposition, the control strategy of grid-side converter of doubly-fed induction generator is improved to control the positive sequence voltage of the generator terminal, which can quickly recover the voltage by compensating the reactive power at the grid side. Consequently, the influence of the fault is weakened on the Hornsea wind farm system, and the sub-synchronous oscillation of the system is suppressed. The simulation results verify the effectiveness of the proposed control strategy in suppressing the sub-synchronous oscillation of weak AC wind power system after being applied to doubly-fed induction generator, which serves as a reference for studying similar problems of offshore wind power.


Sign in / Sign up

Export Citation Format

Share Document