scholarly journals Preparation and characterization of polyacrylate functionalized polythiophene films

2018 ◽  
Vol 175 ◽  
pp. 01007
Author(s):  
Yahui Lv ◽  
Fei Wu ◽  
Chengshuai Liu ◽  
Changzhong Liao ◽  
Yingheng Fei ◽  
...  

This paper is based on the effect of precursors’ structure on the resultant electropolymers’ electrochemical and optical and thermal properties. The polyacrylate functionalized thiophene with a narrow polydispersity index (PDI) was synthesized by means of reversible addition-fragmentation chain transfer (RAFT) polymerization, and then the free-standing and conducting conjugated polyacrylate functionalized polythiophene (R-PTE-PAA) film was prepared through electropolymerization in CH2Cl2 with 50% BFEE (boron trifluoride diethyl etherate). For comparison, the polyacrylate functionalized polythiophene (PTE-PAA) was also prepared with the precursor of a broad PDI from conventional free radical polymerization. The prepared polymers were characterized by UV-vis, FT-IR spectroscopy, thermogravimetry, cyclic voltammetry, scanning electron microscopy and fluorescence spectrophotometry. The R-PTE-PAA film showed the excellent electrochemical behavior, good blue-light property and high thermal stability. Compared with PTE-PAA, the R-PTE-PAA film presented the better electrochemical reversibility and stability. The results obtained in the present study indicate that the R-PTE-PAA film would be important for applications in electrochromics, supercapacitors and electrochemical sensors.

2011 ◽  
Vol 284-286 ◽  
pp. 1717-1723 ◽  
Author(s):  
Jiang Nan Shen ◽  
Yun Fei Ye ◽  
Gan Ning Zeng ◽  
Jun Hong Qiu

PMMA-b-PDMAEMA/polysulfone composite membranes for CO2separation was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization techniques. The chemical composition and structure of the polymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR), and molecular weight and its distribution were measured by Gel permeation chromatography (GPC). CO2permeation performance of the PMMA-b-PDMAEMA/ polysulfone composite membranes was test. The results showed that the resulted composited membrane posses good permeation performance for CO2.


2014 ◽  
Vol 884-885 ◽  
pp. 33-36 ◽  
Author(s):  
Lin Tong Hou ◽  
Jiao Jiao Chen ◽  
Hong Jun Fu ◽  
Xin Lei Fu

A molecularly imprinted microsphere (MIPs) was prepared successfullyviasurface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Characterization of the obtained MIPs was achieved by FT-IR and TGA. The isothermal adsorption and chiral separation experiments of MIPs on L-Carnitine were investigated. Compared with non-imprinted microsphere (NMIPs) adsorbent, MIPs showed faster adsorption rate and stronger adsorption capacity for L-Carnitine. Equilibrium experimental data of MIPs fitted the Langmuir isotherm better. Furthermore, the MIPs also exhibited enantioselectivity for L-Carnitine through the resolution experiment.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Angeliki Chroni ◽  
Thomas Mavromoustakos ◽  
Stergios Pispas

The focus of this study is the development of highly stable losartan potassium (LSR) polymeric nanocarriers. Two novel amphiphilic poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) copolymers with different molecular weight (Mw) of PnBA are synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, followed by the encapsulation of LSR into both PnBA-b-POEGA micelles. Based on dynamic light scattering (DLS), the PnBA30-b-POEGA70 and PnBA27-b-POEGA73 (where the subscripts denote wt.% composition of the components) copolymers formed micelles of 10 nm and 24 nm in water. The LSR-loaded PnBA-b-POEGA nanocarriers presented increased size and greater mass nanostructures compared to empty micelles, implying the successful loading of LSR into the inner hydrophobic domains. A thorough NMR (nuclear magnetic resonance) characterization of the LSR-loaded PnBA-b-POEGA nanocarriers was conducted. Strong intermolecular interactions between the biphenyl ring and the butyl chain of LSR with the methylene signals of PnBA were evidenced by 2D-NOESY experiments. The highest hydrophobicity of the PnBA27-b-POEGA73 micelles contributed to an efficient encapsulation of LSR into the micelles exhibiting a greater value of %EE compared to PnBA30-b-POEGA70 + 50% LSR nanocarriers. Ultrasound release profiles of LSR signified that a great amount of the encapsulated LSR is strongly attached to both PnBA30-b-POEGA70 and PnBA27-b-POEGA73 micelles.


2015 ◽  
Vol 68 (4) ◽  
pp. 680 ◽  
Author(s):  
Ciarán Dolan ◽  
Briar Naysmith ◽  
Simon F. R. Hinkley ◽  
Ian M. Sims ◽  
Margaret A. Brimble ◽  
...  

The objective of this research was to develop novel phosphonate-containing polymers as they remain a relatively under researched area of polymer chemistry. Herein, we report the synthesis and characterization of 2-(1-(2-(diethoxyphosphoryl)ethyl)-1H-1,2,3-triazol-4-yl)ethyl acrylate (M1) and diethyl (2-(4-(2-acrylamidoethyl)-1H-1,2,3-triazol-1-yl)ethyl)phosphonate (M2) monomers using the copper-catalyzed azide–alkyne cycloaddition (CuAAC) ‘click’ reaction, and their subsequent polymerization via both uncontrolled and reversible addition–fragmentation chain transfer (RAFT) polymerization techniques yielding phosphonate polymers (P1–P4).


2007 ◽  
Vol 14 (04) ◽  
pp. 713-717
Author(s):  
MI NA PARK ◽  
YOUNG SOO KANG ◽  
SUN WHA OH ◽  
BYUNG HYUN AHN ◽  
MYUNG JUN MOON

The single hydroxyl-terminated urethane acrylate oligomers were synthesized from 2-mercaptoethanol (2-MEOH), alkyl (methyl, butyl, and 2-ethylhexyl) acrylate, and 2,2-azobisisobutyronitrile (AIBN, initiator), with dibutyltin dilaurate (DBTDL) as a catalyst. 2-MEOH was used as a functional chain transfer agent. Poly(alkyl urethane) acrylate oligomers were obtained by the reaction of single hydroxyl-terminated polyalkyl acrylates and 2-isocyanatoethyl acrylate. They were characterized by NMR, FT-IR spectroscopy, rheometer, and DSC. Because poly(alkyl urethane) acrylate oligomers have lower Tg and viscosity than hydroxyl-terminated polyalkyl acrylate oligomers (HTPAO) non-containing urethane groups, they can be used for ultraviolet (UV) curable coatings, inks, and adhesives.


2020 ◽  
Author(s):  
C Dolan ◽  
B Naysmith ◽  
Simon Hinkley ◽  
Ian Sims ◽  
MA Brimble ◽  
...  

© 2015 CSIRO. The objective of this research was to develop novel phosphonate-containing polymers as they remain a relatively under researched area of polymer chemistry. Herein, we report the synthesis and characterization of 2-(1-(2-(diethoxyphosphoryl)ethyl)-1H-1,2,3-triazol-4-yl)ethyl acrylate (M1) and diethyl (2-(4-(2-acrylamidoethyl)-1H-1,2,3-triazol-1-yl)ethyl)phosphonate (M2) monomers using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) 'click' reaction, and their subsequent polymerization via both uncontrolled and reversible addition-fragmentation chain transfer (RAFT) polymerization techniques yielding phosphonate polymers (P1-P4).


Sign in / Sign up

Export Citation Format

Share Document