scholarly journals Implementation of Maximum Power Point Tracking to Improving the Solar Cell Efficiency

2018 ◽  
Vol 215 ◽  
pp. 01016
Author(s):  
Sepannur Bandri ◽  
Zulkarnaini Zulkarnaini ◽  
Andi Sofian

The sun is one of renewable energy sources. The use of sunlight using solar panels as a power plant began to be developed to reduce the use of fossil fuels. Solar panels have the advantage of being environmentally friendly because they do not have pollution-generating waste, are inexpensive and easy to apply. The power generated by solar panel is influenced by temperature and light intensity factor. The main problem of using solar panels is its efficiency is still low. This research presents an attempt to improve the energy conversion efficiency by solar panels by using Maximum Power Point Tracking method. The main principle of this method is adjusting the output voltage from the solar panel to obtain maximum power for different intensity of sunlight. The solar panel output voltage setting is performed using a buck boost converter controlled by MPPT system. The simulation results show that the use of this method of solar panel output power is higher by 64,78% -87,06% than without MPPT.

2021 ◽  
Vol 3 (2) ◽  
pp. 133-140
Author(s):  
Marhaposan Situmorang ◽  
Monika Panjaitan

Solar energy has been considered as a promising renewable energy source for electric power generation. Solar panel systems have become a popular object to be developed by researchers, but the low efficiency of solar panels in energy conversion is one of the weaknesses of this system. Factors that affect the output produced by solar panels are the intensity of sunlight and the working temperature of the solar panels. The solar panel module has a single operating point where the voltage and current outputs produce the maximum power output. There are three main methods in Maximum Power Point Tracking (MPPT), namely conventional methods, artificial intelligence methods, and hybrid methods. In most solar panel systems, this study uses Maximum Power Point Tracking (MPPT) with perturb and observe algorithms to maximize the use of solar energy. The maximum power point extracted by MPPT will be supplied to the battery and controlled by the Charge Controller. The energy stored in the battery will be used by the Thermo Electric Cooler cooling system to reach the desired temperature point using the keypad as temperature input.


2021 ◽  
Vol 13 (6) ◽  
pp. 3037
Author(s):  
Carlos Muñoz ◽  
Marco Rivera ◽  
Ariel Villalón ◽  
Carlos R. Baier ◽  
Javier Muñoz ◽  
...  

The high increase of renewable energy sources and the increment of distributed generation in the electrical grid has made them complex and of variable parameters, causing potential stability problems to the PI controllers. In this document, a control strategy for power injection to the electrical system from photovoltaic plants through a voltage source inverter two-level-type (VSI-2L) converter is proposed. The algorithm combines a current-based maximum power point-tracking (Current-Based MPPT) with model predictive control (MPC) strategy, allowing avoidance of the use of PI controllers and lowering of the dependence of high-capacitive value condensers. The sections of this paper describe the parts of the system, control algorithms, and simulated and experimental results that allow observation of the behavior of the proposed strategy.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6722
Author(s):  
Mehmet Ali Yildirim ◽  
Marzena Nowak-Ocłoń

Solar photovoltaic (PV) energy is one of the most viable renewable energy sources, considered less polluting than fossil energy. However, the average power conversion efficiency of PV systems is between 15% and 20%, and they must operate with high efficiency. Photovoltaic cells have non-linear voltage–current characteristics that are dependent on environmental factors such as solar irradiation and temperature, and have low efficiency. Therefore, it becomes crucial to harvest the maximum power from PV panels. This paper aims to study and analyze the most common and well-known maximum power point tracking (MPPT) algorithms, perturb and observe (P&O) and incremental conductance (IncCond). These algorithms were found to be easy to implement, low-cost techniques suitable for large- and medium-sized photovoltaic applications. The algorithms were tested and compared dynamically using MATLAB/Simulink software. In order to overcome the low performance of the P&O and IncCond methods under time-varying and fast-changing solar irradiation, several modifications are proposed. Results show an improvement in the tracking and overall system efficiencies and a shortened response time compared with original techniques. In addition, the proposed algorithms minimize the oscillations around the maximum power point (MPP), and the power converges faster.


Sign in / Sign up

Export Citation Format

Share Document