scholarly journals Reviewing global development of multi-hazard early warning system with the perspective of its development in Indonesia

2018 ◽  
Vol 229 ◽  
pp. 02020
Author(s):  
Andi Eka Sakya

Never before a catastrophe brought an influence of the world’s attention like the Indian Ocean Tsunami in 2004 (IOT04). Before IOT04, states of the development of Early Warning System technology (EWS) was not as advanced and progressive as it is today. Together with the unavoidable impacts of climate change, disasters - both geologically and hydro-meteorological - are increasingly becoming the mainstream of global concern. Likewise, it’s EWS technology. This paper reviews the global development of EWS technologies, both related with geologically and hydro-meteorologically: before IOT04, current, and future development vision. The discussion of UN Agencies in the series of endeavor undertaken to embody Sustainable Development Goal (SDG) 2030 leads to a vision of the future development of EWS technology. Three factors become the primary drivers of EWS progress, among others, the growing awareness of the community that alter the form of a requirement of early warning information, the state of development of information technology, and observational instrumentation. The perspective of its application in Indonesia is also discussed.

2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Bachtiar W. Mutaqin ◽  
Ikhwan Amri ◽  
Bagas Aditya

Indonesia memiliki catatan sejarah yang panjang dengan bencana tsunami. Dari sejumlah kejadian tsunami yang ada, tsunami Samudra Hindia tahun 2004 dinilai sebagai bencana alam yang paling mematikan sepanjang abad dan paling berperan dalam mengubah paradigma manajemen kebencanaan di Indonesia. Penelitian ini bertujuan untuk meninjau pola kejadian tsunami dan perkembangan manajemen bencana di Indonesia setelah tsunami tahun 2004 dengan memanfaatkan database tsunami dan tinjauan literatur. Sebanyak 22 kejadian tsunami telah tercatat di Indonesia selama 2005-2018, di mana sebagian besar lokasi tsunami terkonsentrasi di Pulau Sumatera bagian barat dan bersumber dari Samudra Hindia. Tujuh kejadian diantaranya menimbulkan dampak signifikan, termasuk dua tsunami terakhir yang dipicu oleh faktor non seismik. Sistem manajemen bencana sebenarnya telah mengalami perubahan secara besar-besaran setelah tsunami tahun 2004, mulai dari berlakunya peraturan perundang-undangan tentang penanggulangan bencana, pembentukan institusi baru untuk penanggulangan bencana, hingga konstuksi sistem peringatan dini tsunami (InaTEWS). Meskipun telah berfokus pada upaya preventif, dampak tsunami dalam beberapa tahun terakhir masih cukup besar. Hal ini dipengaruhi oleh 4 faktor utama: (1) konsentrasi penduduk yang tinggi di area bahaya tsunami, (2) terbatasnya infrastruktur diseminasi peringatan dini, (3) kurangnya kesadaran masyarakat untuk melakukan evakuasi mandiri tanpa menunggu peringatan, dan (4) sistem peringatan dini tsunami belum mempertimbangkan faktor non seismik.Indonesia has a long history with the tsunami. From numerous tsunami events in the world, the 2004 Indian Ocean tsunami was considered as the deadliest natural disaster of the century and had the most role in changing the paradigm of disaster management in Indonesia. This study aims to review the spatial pattern of tsunami events and the development of disaster management in Indonesia following the 2004 tsunami through the tsunami database and literature review. At least there are 22 tsunami events were recorded in Indonesia in the period of 2005-2018, where most of its locations were concentrated on the western part of Sumatra Island and sourced from the Indian Ocean. We had identified that seven of these events have significant impacts, including the last two tsunamis triggered by non-seismic factors. The disaster management system has actually improved drastically following the 2004 tsunami, such as the enactment of laws and regulations on disaster management, the establishment of special institutions for disaster management, and the construction of a tsunami early warning system (InaTEWS). Although it has focused on preventive measures, tsunami impacts in recent years are still quite large. This situation is affected by four factors: (1) high and dense population in the tsunami hazard area, (2) limited infrastructure for early warning dissemination, (3) lack of public awareness to conduct evacuations following the disaster events, and (4) early warning systems for tsunami has not considered yet the non-seismic factors.


2010 ◽  
Vol 10 (4) ◽  
pp. 641-646 ◽  
Author(s):  
J. Lauterjung ◽  
U. Münch ◽  
A. Rudloff

Abstract. Indonesia is located along the most prominent active continental margin in the Indian Ocean, the so-called Sunda Arc and, therefore, is one of the most threatened regions of the world in terms of natural hazards such as earthquakes, volcanoes, and tsunamis. On 26 December 2004 the third largest earthquake ever instrumentally recorded (magnitude 9.3, Stein and Okal, 2005) occurred off-shore northern Sumatra and triggered a mega-tsunami affecting the whole Indian Ocean. Almost a quarter of a million people were killed, as the region was not prepared either in terms of early-warning or in terms of disaster response. In order to be able to provide, in future, a fast and reliable warning procedure for the population, Germany, immediately after the catastrophe, offered during the UN World Conference on Disaster Reduction in Kobe, Hyogo/Japan in January 2005 technical support for the development and installation of a tsunami early warning system for the Indian Ocean in addition to assistance in capacity building in particular for local communities. This offer was accepted by Indonesia but also by other countries like Sri Lanka, the Maldives and some East-African countries. Anyhow the main focus of our activities has been carried out in Indonesia as the main source of tsunami threat for the entire Indian Ocean. Challenging for the technical concept of this warning system are the extremely short warning times for Indonesia, due to its vicinity to the Sunda Arc. For this reason the German Indonesian Tsunami Early Warning System (GITEWS) integrates different modern and new scientific monitoring technologies and analysis methods.


Sign in / Sign up

Export Citation Format

Share Document