scholarly journals Pola Kejadian Tsunami dan Perkembangan Manajemen Bencana di Indonesia setelah Tsunami Samudra Hindia Tahun 2004: Sebuah Tinjauan

2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Bachtiar W. Mutaqin ◽  
Ikhwan Amri ◽  
Bagas Aditya

Indonesia memiliki catatan sejarah yang panjang dengan bencana tsunami. Dari sejumlah kejadian tsunami yang ada, tsunami Samudra Hindia tahun 2004 dinilai sebagai bencana alam yang paling mematikan sepanjang abad dan paling berperan dalam mengubah paradigma manajemen kebencanaan di Indonesia. Penelitian ini bertujuan untuk meninjau pola kejadian tsunami dan perkembangan manajemen bencana di Indonesia setelah tsunami tahun 2004 dengan memanfaatkan database tsunami dan tinjauan literatur. Sebanyak 22 kejadian tsunami telah tercatat di Indonesia selama 2005-2018, di mana sebagian besar lokasi tsunami terkonsentrasi di Pulau Sumatera bagian barat dan bersumber dari Samudra Hindia. Tujuh kejadian diantaranya menimbulkan dampak signifikan, termasuk dua tsunami terakhir yang dipicu oleh faktor non seismik. Sistem manajemen bencana sebenarnya telah mengalami perubahan secara besar-besaran setelah tsunami tahun 2004, mulai dari berlakunya peraturan perundang-undangan tentang penanggulangan bencana, pembentukan institusi baru untuk penanggulangan bencana, hingga konstuksi sistem peringatan dini tsunami (InaTEWS). Meskipun telah berfokus pada upaya preventif, dampak tsunami dalam beberapa tahun terakhir masih cukup besar. Hal ini dipengaruhi oleh 4 faktor utama: (1) konsentrasi penduduk yang tinggi di area bahaya tsunami, (2) terbatasnya infrastruktur diseminasi peringatan dini, (3) kurangnya kesadaran masyarakat untuk melakukan evakuasi mandiri tanpa menunggu peringatan, dan (4) sistem peringatan dini tsunami belum mempertimbangkan faktor non seismik.Indonesia has a long history with the tsunami. From numerous tsunami events in the world, the 2004 Indian Ocean tsunami was considered as the deadliest natural disaster of the century and had the most role in changing the paradigm of disaster management in Indonesia. This study aims to review the spatial pattern of tsunami events and the development of disaster management in Indonesia following the 2004 tsunami through the tsunami database and literature review. At least there are 22 tsunami events were recorded in Indonesia in the period of 2005-2018, where most of its locations were concentrated on the western part of Sumatra Island and sourced from the Indian Ocean. We had identified that seven of these events have significant impacts, including the last two tsunamis triggered by non-seismic factors. The disaster management system has actually improved drastically following the 2004 tsunami, such as the enactment of laws and regulations on disaster management, the establishment of special institutions for disaster management, and the construction of a tsunami early warning system (InaTEWS). Although it has focused on preventive measures, tsunami impacts in recent years are still quite large. This situation is affected by four factors: (1) high and dense population in the tsunami hazard area, (2) limited infrastructure for early warning dissemination, (3) lack of public awareness to conduct evacuations following the disaster events, and (4) early warning systems for tsunami has not considered yet the non-seismic factors.

2011 ◽  
Vol 6 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Tomoyuki Takahashi ◽  
◽  
Tomohiro Konuma ◽  

There is still no tsunami warning systemprotecting the shores of the Indian Ocean, but imagine that a tsunami warning system had been in operation at the time of the 2004 Indian Ocean Tsunami. What disaster management information would have been issued for this tsunami ? This paper first proposes four tsunamimodels based on the earthquake information issued by different institutions. Next, setting these tsunami models as the initial condition, tsunami simulations are conducted to find the height of the tsunami striking the coastline around the Indian Ocean. As a result, it is indicated that because the tsunami model immediately after occurrence of the 2004 Sumatra Earthquake and the Indian Ocean tsunami calculated from this model are underestimated, appropriate tsunami warnings would most probably not have been issued before the 2004 tsunami struck land.


2007 ◽  
Vol 01 (01) ◽  
pp. 87-98 ◽  
Author(s):  
PAVEL TKALICH ◽  
MY HA DAO ◽  
ENG SOON CHAN

After the devastating Indian Ocean 2004 Tsunami, coastal economies around the Indian Ocean have been reminded of the necessity to make well-coordinated efforts to deal with the tsunami problem. An integrated socio-technological infrastructure has to be built, with key tasks including advanced sensors, reliable communication networks, fast predictive algorithms, early warning systems, and educational outreach. This paper highlights the key features of a prediction system under development in Singapore in support of the early warning system being developed in the region.


2008 ◽  
Vol 02 (03) ◽  
pp. 197-226 ◽  
Author(s):  
B. PRASAD KUMAR ◽  
R. RAJESH KUMAR ◽  
S. K. DUBE ◽  
A. D. RAO ◽  
TAD MURTY ◽  
...  

On 26th December 2004, the countries within the vicinity of East Indian Ocean experienced the most devastating tsunami in recorded history. This tsunami was triggered by an earthquake of magnitude 9.0 on the Richter scale at 3.4°N, 95.7°E off the coast of Sumatra in the Indonesian Archipelago at 06:29 hrs IST (00:59 hrs GMT). One of the most basic information that any tsunami warning center should have at its disposal, is information on Tsunami Travel Times (TTT) to various coastal locations surrounding the Indian Ocean rim, as well as to several island locations. Devoid of this information, no ETA's (expected times of arrival) can be included in the real-time tsunami warnings. The work describes on development of a comprehensive TTT atlas providing ETA's to various coastal destinations in the Indian Ocean rim. This Atlas was first released on the first anniversary of the Indian Ocean Tsunami and was dedicated to the victims. Application of soft computing tools like Artificial Neural Network (ANN) for prediction of ETA can be immensely useful in a real-time mode. The major advantage of using ANN in a real-time tsunami travel time prediction is its high merit in producing ETA at a much faster time and also simultaneously preserving the consistency of prediction. Overall, it can be mentioned that modern technology can prevent or help in minimizing the loss of life and property provided we integrate all essential components in the warning system and put it to the best possible use.


2010 ◽  
Vol 10 (12) ◽  
pp. 2623-2629 ◽  
Author(s):  
J. Lauterjung ◽  
P. Koltermann ◽  
U. Wolf ◽  
J. Sopaheluwakan

Abstract. The Sumatra-Andaman earthquake with a magnitude of 9.3, and the subsequent destructive tsunami which caused more than 225 000 fatalities in the region of the Indian Ocean, happened on 26 December 2004. Less than one month later, the United Nations (UN) World Conference on Disaster Reduction took place in Kobe, Japan to commemorate the 1995 Kobe earthquake. The importance of preparedness and awareness on regional, national and community levels with respect to natural disasters was discussed during this meeting, and resulted in the approval of the Hyogo Declaration on Disaster Reduction. Based on this declaration the UN mandated the Intergovernmental Oceanographic Commission (IOC) of UNESCO (United Nations Education, Science and Cultural Organization), taking note of its over 40 years of successful coordination of the Pacific Tsunami Warning System (PTWC), to take on the international coordination of national early-warning efforts for the Indian Ocean and to guide the process of setting up a Regional Tsunami Early Warning System for the Indian Ocean.


2010 ◽  
Vol 10 (4) ◽  
pp. 641-646 ◽  
Author(s):  
J. Lauterjung ◽  
U. Münch ◽  
A. Rudloff

Abstract. Indonesia is located along the most prominent active continental margin in the Indian Ocean, the so-called Sunda Arc and, therefore, is one of the most threatened regions of the world in terms of natural hazards such as earthquakes, volcanoes, and tsunamis. On 26 December 2004 the third largest earthquake ever instrumentally recorded (magnitude 9.3, Stein and Okal, 2005) occurred off-shore northern Sumatra and triggered a mega-tsunami affecting the whole Indian Ocean. Almost a quarter of a million people were killed, as the region was not prepared either in terms of early-warning or in terms of disaster response. In order to be able to provide, in future, a fast and reliable warning procedure for the population, Germany, immediately after the catastrophe, offered during the UN World Conference on Disaster Reduction in Kobe, Hyogo/Japan in January 2005 technical support for the development and installation of a tsunami early warning system for the Indian Ocean in addition to assistance in capacity building in particular for local communities. This offer was accepted by Indonesia but also by other countries like Sri Lanka, the Maldives and some East-African countries. Anyhow the main focus of our activities has been carried out in Indonesia as the main source of tsunami threat for the entire Indian Ocean. Challenging for the technical concept of this warning system are the extremely short warning times for Indonesia, due to its vicinity to the Sunda Arc. For this reason the German Indonesian Tsunami Early Warning System (GITEWS) integrates different modern and new scientific monitoring technologies and analysis methods.


Sign in / Sign up

Export Citation Format

Share Document