scholarly journals Study of Plantar Pressure Distribution

2018 ◽  
Vol 237 ◽  
pp. 01016
Author(s):  
Chun Kit Ang ◽  
Mahmud Iwan Solihin ◽  
Weng Jun Chan ◽  
Yien Yien Ong

Every region of foot is not equally divided in terms of plantar pressure distribution (PPD) during free standing. This paper is focusing on studying PPD on flat plane and inclined plane and the results obtained from this study may contribute to biomedical researcher in designing orthotic devices. 24 healthy young adults age ranging from 19 to 24 years old and weigh between 50 to 80 kg were invited for experiments purpose. Six regions of both feet were measured which were hallux, medial forefoot, central forefoot, lateral forefoot, lateral midfoot and hindfoot. Remarkable differences were seen in the result as right foot exerted more pressure generally in every region of the foot as to compared with left foot respectively. This is true especially for region such as hallux, medial forefoot and lateral forefoot. On a flat surface, PPD on the hindfoot is the highest. However, at an elevation of 25°, test subjects began to shift their PPD to forefoot regions. While studies of PPD are common, this study provides a new insight for the first time into PPD while standing on different angle of walking plane.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


2011 ◽  
Vol 33 (3) ◽  
pp. 396-400 ◽  
Author(s):  
Karin Elisabeth Fiedler ◽  
Wijnand Jan A. Stuijfzand ◽  
Jaap Harlaar ◽  
Joost Dekker ◽  
Heleen Beckerman

1995 ◽  
Vol 10 (5) ◽  
pp. 271-274 ◽  
Author(s):  
H Chen ◽  
BM Nigg ◽  
M Hulliger ◽  
J de Koning

Sign in / Sign up

Export Citation Format

Share Document