scholarly journals The peak stress method applied to the fatigue assessment of tube-tube steel joints with weld ends under multiaxial loadings

2019 ◽  
Vol 300 ◽  
pp. 19001
Author(s):  
Giovanni Meneghetti ◽  
Alberto Campagnolo ◽  
Michael Vormwald ◽  
Ehsan Shams

The Peak Stress Method (PSM) is an approximate, FE-oriented application of the notch stress intensity factor (NSIF) approach to fatigue design of welded joints, which is based on the singular linear elastic peak stresses calculated from FE analyses performed by using coarse mesh patterns. By adopting the averaged strain energy density (SED) as a fatigue strength criterion, a design stress (the equivalent peak stress) can be defined; in conjunction with a reference design curve previously defined, the fatigue strength assessment of welded joints subjected to multiaxial fatigue loadings can be performed. In the present contribution, the PSM has been applied to the fatigue assessment of tube-tube steel joints with weld ends, which have been fatigue tested in a previous contribution under combined loadings: namely pure axial, pure torsion and in-phase as well as out-of-phase axial-torsion loadings, all of which with two load ratios, i.e. R = 0 and R = -1. The experimental fatigue results have been re-converted in terms of equivalent peak stress by adopting a 3D FE model including an idealised weld end geometry. The equivalent peak stress has proved to assess the fatigue crack initiation location in agreement with experimental observations, moreover a quite good agreement has been obtained between the experimental results and the PSM-based design scatter band.

2020 ◽  
Vol 135 ◽  
pp. 105495 ◽  
Author(s):  
Alberto Campagnolo ◽  
Michael Vormwald ◽  
Ehsan Shams ◽  
Giovanni Meneghetti

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Boris Fuštar ◽  
Ivan Lukačević ◽  
Darko Dujmović

Due to high stress concentrations, welded joints represent the most common locations of fatigue crack initiation in steel structures that are prone to fatigue. Welding affects material properties by the process of heating, cooling, and combining basic and additional material. Since welding is the primary process of joining elements in steel structures, it is obvious that fatigue assessment during the design and maintenance process becomes inevitable. There are many fatigue assessment methods of welded joints, but their precision remains questionable. This paper represents a review of the most common fatigue assessment methods used for welded steel joints. As a result of this review, areas that require additional research are highlighted.


2019 ◽  
Vol 125 ◽  
pp. 362-380 ◽  
Author(s):  
Giovanni Meneghetti ◽  
Alberto Campagnolo ◽  
Vittorio Babini ◽  
Matteo Riboli ◽  
Andrea Spagnoli

2016 ◽  
Vol 60 (3) ◽  
pp. 559-572 ◽  
Author(s):  
Giovanni Meneghetti ◽  
Davide Marini ◽  
Vittorio Babini

Sign in / Sign up

Export Citation Format

Share Document