scholarly journals A PKC-based security architecture for WSN

2020 ◽  
Vol 309 ◽  
pp. 02006
Author(s):  
Jianbo Yao ◽  
Chaoqiong Yang

It is an important challenge to find out suitable cryptography for WSN due to limitations of energy, computation capability and storage resources. Considering this sensor feature on limitations of resources, a security architecture based-on public key cryptography is proposed. The security architecture is based on identity based cryptosystem, but not requires key handshaking. The analysis shows that the security architecture ensures a good level of security and is very much suitable for the resources constrained trend of wireless sensor network.

Cyber Crime ◽  
2013 ◽  
pp. 1654-1681
Author(s):  
Dulal C. Kar ◽  
Hung L. Ngo ◽  
Clifton J. Mulkey ◽  
Geetha Sanapala

It is challenging to secure a wireless sensor network (WSN) because its inexpensive, tiny sensor nodes do not have the necessary processing capability, memory capacity, and battery life to take advantage of the existing security solutions for traditional networks. Existing security solutions for wireless sensor networks are mostly based on symmetric key cryptography with the assumption that sensor nodes are embedded with secret, temporary startup keys before deployment thus avoiding any use of computationally demanding public key algorithms altogether. However, symmetric key cryptography alone cannot satisfactorily provide all security needs for wireless sensor networks. It is still problematic to replenish an operational wireless sensor network with new sensor nodes securely. Current research on public key cryptography for WSNs shows some promising results, particularly in the use of elliptic curve cryptography and identity based encryption for WSNs. Although security is essential for WSNs, it can complicate some crucial operations of a WSN like data aggregation or in-network data processing that can be affected by a particular security protocol. Accordingly, in this chapter, the authors summarize, discuss, and evaluate recent symmetric key based results reported in literature on sensor network security protocols such as for key establishment, random key pre-distribution, data confidentiality, data integrity, and broadcast authentication as well as expose limitations and issues related to those solutions for WSNs. The authors also present significant advancement in public key cryptography for WSNs with promising results from elliptic curve cryptography and identity based encryption as well as their limitations for WSNs. In addition,they also discuss recently identified threats and their corresponding countermeasures in WSNs.


2010 ◽  
pp. 1449-1472
Author(s):  
Dulal C. Kar ◽  
Hung L. Ngo ◽  
Geetha Sanapala

It is challenging to secure a wireless sensor network (WSN) because its inexpensive, tiny sensor nodes do not have the necessary processing capability, memory capacity, and battery life to take advantage of the existing security solutions for traditional networks. Existing security solutions for wireless sensor networks are mostly based on symmetric key cryptography with the assumption that sensor nodes are embedded with secret, temporary startup keys before deployment thus avoiding any use of computationally demanding public key algorithms altogether. However, symmetric key cryptography alone cannot satisfactorily provide all security needs for wireless sensor networks. It is still problematic to replenish an operational wireless sensor network with new sensor nodes securely. Current research on public key cryptography for WSNs shows some promising results, particularly in the use of elliptic curve cryptography and identity based encryption for WSNs. Although security is essential for WSNs, it can complicate some crucial operations of a WSN like data aggregation or in-network data processing that can be affected by a particular security protocol. Accordingly, in this paper, we summarize, discuss, and evaluate recent symmetric key based results reported in literature on sensor network security protocols such as for key establishment, random key pre-distribution, data confidentiality, data integrity, and broadcast authentication as well as expose limitations and issues related to those solutions for WSNs. We also present significant advancement in public key cryptography for WSNs with promising results from elliptic curve cryptography and identity based encryption as well as their limitations for WSNs.


Author(s):  
Dulal C. Kar ◽  
Hung L. Ngo ◽  
Clifton J. Mulkey ◽  
Geetha Sanapala

It is challenging to secure a wireless sensor network (WSN) because its inexpensive, tiny sensor nodes do not have the necessary processing capability, memory capacity, and battery life to take advantage of the existing security solutions for traditional networks. Existing security solutions for wireless sensor networks are mostly based on symmetric key cryptography with the assumption that sensor nodes are embedded with secret, temporary startup keys before deployment thus avoiding any use of computationally demanding public key algorithms altogether. However, symmetric key cryptography alone cannot satisfactorily provide all security needs for wireless sensor networks. It is still problematic to replenish an operational wireless sensor network with new sensor nodes securely. Current research on public key cryptography for WSNs shows some promising results, particularly in the use of elliptic curve cryptography and identity based encryption for WSNs. Although security is essential for WSNs, it can complicate some crucial operations of a WSN like data aggregation or in-network data processing that can be affected by a particular security protocol. Accordingly, in this chapter, the authors summarize, discuss, and evaluate recent symmetric key based results reported in literature on sensor network security protocols such as for key establishment, random key pre-distribution, data confidentiality, data integrity, and broadcast authentication as well as expose limitations and issues related to those solutions for WSNs. The authors also present significant advancement in public key cryptography for WSNs with promising results from elliptic curve cryptography and identity based encryption as well as their limitations for WSNs. In addition,they also discuss recently identified threats and their corresponding countermeasures in WSNs.


2012 ◽  
pp. 2158-2186
Author(s):  
Dulal C. Kar ◽  
Hung L. Ngo ◽  
Clifton J. Mulkey ◽  
Geetha Sanapala

It is challenging to secure a wireless sensor network (WSN) because its inexpensive, tiny sensor nodes do not have the necessary processing capability, memory capacity, and battery life to take advantage of the existing security solutions for traditional networks. Existing security solutions for wireless sensor networks are mostly based on symmetric key cryptography with the assumption that sensor nodes are embedded with secret, temporary startup keys before deployment thus avoiding any use of computationally demanding public key algorithms altogether. However, symmetric key cryptography alone cannot satisfactorily provide all security needs for wireless sensor networks. It is still problematic to replenish an operational wireless sensor network with new sensor nodes securely. Current research on public key cryptography for WSNs shows some promising results, particularly in the use of elliptic curve cryptography and identity based encryption for WSNs. Although security is essential for WSNs, it can complicate some crucial operations of a WSN like data aggregation or in-network data processing that can be affected by a particular security protocol. Accordingly, in this chapter, the authors summarize, discuss, and evaluate recent symmetric key based results reported in literature on sensor network security protocols such as for key establishment, random key pre-distribution, data confidentiality, data integrity, and broadcast authentication as well as expose limitations and issues related to those solutions for WSNs. The authors also present significant advancement in public key cryptography for WSNs with promising results from elliptic curve cryptography and identity based encryption as well as their limitations for WSNs. In addition,they also discuss recently identified threats and their corresponding countermeasures in WSNs.


2009 ◽  
Vol 3 (3) ◽  
pp. 14-36
Author(s):  
Dulal C. Kar ◽  
Hung L. Ngo ◽  
Geetha Sanapala

It is challenging to secure a wireless sensor network (WSN) because its inexpensive, tiny sensor nodes do not have the necessary processing capability, memory capacity, and battery life to take advantage of the existing security solutions for traditional networks. Existing security solutions for wireless sensor networks are mostly based on symmetric key cryptography with the assumption that sensor nodes are embedded with secret, temporary startup keys before deployment thus avoiding any use of computationally demanding public key algorithms altogether. However, symmetric key cryptography alone cannot satisfactorily provide all security needs for wireless sensor networks. It is still problematic to replenish an operational wireless sensor network with new sensor nodes securely. Current research on public key cryptography for WSNs shows some promising results, particularly in the use of elliptic curve cryptography and identity based encryption for WSNs. Although security is essential for WSNs, it can complicate some crucial operations of a WSN like data aggregation or in-network data processing that can be affected by a particular security protocol. Accordingly, in this paper, we summarize, discuss, and evaluate recent symmetric key based results reported in literature on sensor network security protocols such as for key establishment, random key pre-distribution, data confidentiality, data integrity, and broadcast authentication as well as expose limitations and issues related to those solutions for WSNs. We also present significant advancement in public key cryptography for WSNs with promising results from elliptic curve cryptography and identity based encryption as well as their limitations for WSNs.


Author(s):  
Dulal C. Kar ◽  
Hung L. Ngo ◽  
Clifton J. Mulkey

It is challenging to secure a wireless sensor network (WSN) because of its use of inexpensive sensor nodes of very limited processing capability, memory capacity, and battery life that preclude using traditional security solutions. Due to perceived excessive computational and architectural overhead, public key algorithms are altogether avoided for WSNs. Currently security in WSNs is provided using only symmetric key cryptography, but it requires keys to be embedded in sensor nodes before deployment and the entire network has to go through a key establishment phase after deployment. Accordingly, in this chapter, we summarize, discuss, and evaluate recent results reported in literature on sensor network security protocols such as for key establishment, random key pre-distribution, data confidentiality, and broadcast authentication. In addition, we discuss promising research results in public key cryptography for WSNs, particularly related to elliptic curve cryptography and its application for identity based encryption.


Author(s):  
Manjunatha R C ◽  
Rekha K R ◽  
Nataraj K R

<p>Wireless sensor networks are usually left unattended and serve hostile environment, therefore can easily be compromised. With compromised nodes an attacker can conduct several inside and outside attacks. Node replication attack is one of them which can cause severe damage to wireless sensor network if left undetected. This paper presents fuzzy based simulation framework for detection and revocation of compromised nodes in wireless sensor network. Our proposed scheme uses PDR statistics and neighbor reports to determine the probability of a cluster being compromised. Nodes in compromised cluster are then revoked and software attestation is performed.Simulation is carried out on MATLAB 2010a and performance of proposed scheme is compared with conventional algorithms on the basis of communication and storage overhead. Simulation results show that proposed scheme require less communication and storage overhead than conventional algorithms.</p>


Sign in / Sign up

Export Citation Format

Share Document