scholarly journals The majority coloring of the join and Cartesian product of some digraph

2022 ◽  
Vol 355 ◽  
pp. 02004
Author(s):  
Mei Shi ◽  
Weihao Xia ◽  
Mingyue Xiao ◽  
Jihui Wang

A majority coloring of a digraph is a vertex coloring such that for every vertex, the number of vertices with the same color in the out-neighborhood does not exceed half of its out-degree. Kreutzer, Oum, Seymour and van der Zyper proved that every digraph is majority 4-colorable and conjecture that every digraph has a majority 3-coloring. This paper mainly studies the majority coloring of the joint and Cartesian product of some special digraphs and proved the conjecture is true for the join graph and the Cartesian product. According to the influence of the number of vertices in digraph, we prove the majority coloring of the joint and Cartesian product of some digraph.

2021 ◽  
Vol 26 (4) ◽  
pp. 80
Author(s):  
Xue Yang ◽  
Hong Bian ◽  
Haizheng Yu ◽  
Dandan Liu

Let G=(V(G),E(G)) be a connected graph with n vertices and m edges. A bijection f:E(G)→{1,2,⋯,m} is an edge labeling of G. For any vertex x of G, we define ω(x)=∑e∈E(x)f(e) as the vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called a local antimagic labeling of G, if ω(u)≠ω(v) for any two adjacent vertices u,v∈V(G). It is clear that any local antimagic labelling of G induces a proper vertex coloring of G by assigning the vertex label ω(x) to any vertex x of G. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of different vertex labels taken over all colorings induced by local antimagic labelings of G. In this paper, we present explicit local antimagic chromatic numbers of Fn∨K2¯ and Fn−v, where Fn is the friendship graph with n triangles and v is any vertex of Fn. Moreover, we explicitly construct an infinite class of connected graphs G such that χla(G)=χla(G∨K2¯), where G∨K2¯ is the join graph of G and the complement graph of complete graph K2. This fact leads to a counterexample to a theorem of Arumugam et al. in 2017, and our result also provides a partial solution to Problem 3.19 in Lau et al. in 2021.


Author(s):  
S. Akbari ◽  
M. CHAVOOSHI ◽  
M. Ghanbari ◽  
S. Taghian

A proper vertex coloring of a graph [Formula: see text] is called a star coloring if every two color classes induce a forest whose each component is a star, which means there is no bicolored [Formula: see text] in [Formula: see text]. In this paper, we show that the Cartesian product of any two cycles, except [Formula: see text] and [Formula: see text], has a [Formula: see text]-star coloring.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Akbar Davoodi ◽  
Behnaz Omoomi

Graph Theory International audience A k-edge-weighting of a graph G is a function w:E(G)→{1,…,k}. An edge-weighting naturally induces a vertex coloring c, where for every vertex v∈V(G), c(v)=∑e∼vw(e). If the induced coloring c is a proper vertex coloring, then w is called a vertex-coloring k-edge-weighting (VC k-EW). Karoński et al. (J. Combin. Theory Ser. B, 91 (2004) 151 13;157) conjectured that every graph admits a VC 3-EW. This conjecture is known as the 1-2-3-conjecture. In this paper, first, we study the vertex-coloring edge-weighting of the Cartesian product of graphs. We prove that if the 1-2-3-conjecture holds for two graphs G and H, then it also holds for G□H. Also we prove that the Cartesian product of connected bipartite graphs admits a VC 2-EW. Moreover, we present several sufficient conditions for a graph to admit a VC 2-EW. Finally, we explore some bipartite graphs which do not admit a VC 2-EW.


2021 ◽  
pp. 16-27
Author(s):  
Aparna V. ◽  
◽  
Mohanapriya N. ◽  
Broumi Said ◽  
◽  
...  

The notion of neutrosophic sets facilitates the analysis of values that are unclear or indeterminate. In this paper, we discuss the single-valued neutrosophic R-dynamic vertex coloring of the Cartesian product of SVNG’sand join of SVG's. Further, we have described the concept of single-valued neutrosophic R-dynamic edge coloring and provided some examples and theorems.


10.37236/1669 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Garth Isaak

A graph is $f$-choosable if for every collection of lists with list sizes specified by $f$ there is a proper coloring using colors from the lists. The sum choice number is the minimum over all choosable functions $f$ of the sum of the sizes in $f$. We show that the sum choice number of a $2 \times n$ array (equivalent to list edge coloring $K_{2,n}$ and to list vertex coloring the cartesian product $K_2 \square K_n$) is $n^2 + \lceil 5n/3 \rceil$.


2020 ◽  
Vol 9 (3) ◽  
pp. 1189-1195 ◽  
Author(s):  
Y. Bhargavi ◽  
T. Eswarlal ◽  
S. Ragamayi
Keyword(s):  

2021 ◽  
Vol 83 (1) ◽  
Author(s):  
David Schaller ◽  
Manuel Lafond ◽  
Peter F. Stadler ◽  
Nicolas Wieseke ◽  
Marc Hellmuth

AbstractSeveral implicit methods to infer horizontal gene transfer (HGT) focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of a graph, the later-divergence-time (LDT) graph, whose vertices correspond to genes colored by their species. We investigate these graphs in the setting of relaxed scenarios, i.e., evolutionary scenarios that encompass all commonly used variants of duplication-transfer-loss scenarios in the literature. We characterize LDT graphs as a subclass of properly vertex-colored cographs, and provide a polynomial-time recognition algorithm as well as an algorithm to construct a relaxed scenario that explains a given LDT. An edge in an LDT graph implies that the two corresponding genes are separated by at least one HGT event. The converse is not true, however. We show that the complete xenology relation is described by an rs-Fitch graph, i.e., a complete multipartite graph satisfying constraints on the vertex coloring. This class of vertex-colored graphs is also recognizable in polynomial time. We finally address the question “how much information about all HGT events is contained in LDT graphs” with the help of simulations of evolutionary scenarios with a wide range of duplication, loss, and HGT events. In particular, we show that a simple greedy graph editing scheme can be used to efficiently detect HGT events that are implicitly contained in LDT graphs.


Author(s):  
JING TIAN ◽  
KEXIANG XU ◽  
SANDI KLAVŽAR

Abstract The general position number of a connected graph is the cardinality of a largest set of vertices such that no three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that the general position number is additive on the Cartesian product of two trees.


Sign in / Sign up

Export Citation Format

Share Document