scholarly journals Mathematical analysis of a diffusive predator-prey model with herd behavior and prey escaping

2020 ◽  
Vol 15 ◽  
pp. 23 ◽  
Author(s):  
Fethi Souna ◽  
Salih Djilali ◽  
Fayssal Charif

In this paper, we consider a new approach of prey escaping from herd in a predator-prey model with the presence of spatial diffusion. First, the sensitivity of the equilibrium state density with respect to the escaping rate has been studied. Then, the analysis of the non diffusive system was investigated where boundedness, local, global stability, Hopf bifurcation are obtained. Besides, for the diffusive system, we proved the occurrence of Hopf bifurcation and the non existence of diffusion driven instability. Furthermore, the direction of Hopf bifurcation has been proved using the normal form on the center manifold. Some numerical simulations have been used to illustrate the obtained results.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2019 ◽  
Vol 29 (04) ◽  
pp. 1950055
Author(s):  
Fengrong Zhang ◽  
Yan Li ◽  
Changpin Li

In this paper, we consider a delayed diffusive predator–prey model with Leslie–Gower term and herd behavior subject to Neumann boundary conditions. We are mainly concerned with the impact of time delay on the stability of this model. First, for delayed differential equations and delayed-diffusive differential equations, the stability of the positive equilibrium and the existence of Hopf bifurcation are investigated respectively. It is observed that when time delay continues to increase and crosses through some critical values, a family of homogeneous and inhomogeneous periodic solutions emerge. Then, the explicit formula for determining the stability and direction of bifurcating periodic solutions are also derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are shown to support the analytical results.


2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Yan Li ◽  
Sanyun Li ◽  
Fengrong Zhang

This paper is devoted to considering a diffusive predator–prey model with Leslie–Gower term and herd behavior subject to the homogeneous Neumann boundary conditions. Concretely, by choosing the proper bifurcation parameter, the local stability of constant equilibria of this model without diffusion and the existence of Hopf bifurcation are investigated by analyzing the distribution of the eigenvalues. Furthermore, the explicit formula for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are also derived by applying the normal form theory. Next, we show the stability of positive constant equilibrium, the existence and stability of periodic solutions near positive constant equilibrium for the diffusive model. Finally, some numerical simulations are carried out to support the analytical results.


2014 ◽  
Vol 926-930 ◽  
pp. 3314-3317
Author(s):  
Hong Bing Chen

In this paper, a predator–prey model with discrete and distributed delays is investigated. the direction of Hopf bifurcation as well as stability of periodic solution are studied. The method which we used is the normal form theory and center manifold. At last, an example showed the feasibility of results.


2015 ◽  
Vol 25 (11) ◽  
pp. 1550155 ◽  
Author(s):  
Chaoqun Xu ◽  
Sanling Yuan

A delayed diffusive predator–prey model with herd behavior subject to Neumann boundary conditions is studied both theoretically and numerically. Applying Hopf bifurcation analysis, we obtain the critical conditions under which the model generates spatially nonhomogeneous bifurcating periodic solutions. It is shown that the spatially homogeneous Hopf bifurcations always exist and that the spatially nonhomogeneous Hopf bifurcations will arise when the diffusion coefficients are suitably small. The explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorems for partial functional differential equations.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.


Sign in / Sign up

Export Citation Format

Share Document