scholarly journals Improved sweeping preconditioners for domain decomposition algorithms applied to time-harmonic Helmholtz and Maxwell problems

2018 ◽  
Vol 61 ◽  
pp. 93-111 ◽  
Author(s):  
Alexandre Vion ◽  
Christophe Geuzaine

Sweeping-type algorithms have recently gained a lot of interest for the solution of highfrequency time-harmonic wave problems, in particular when used in combination with perfectly matched layers. However, an inherent problem with sweeping approaches is the sequential nature of the process, which makes them inadequate for efficient implementation on parallel computers. We propose several improvements to the double-sweep preconditioner originally presented in [18], which uses sweeping as a matrix-free preconditioner for a Schwarz domain decomposition method. Similarly, the improved preconditioners are based on approximations of the inverse of the Schwarz iteration operator: the general methodology is to apply well-known algebraic techniques to the operator seen as a matrix, which in turn is processed to obtain equivalent matrix-free routines that we use as preconditioners. A notable feature of the new variants is the introduction of partial sweeps that can be performed concurrently in order to make a better usage of the resources. As these modifications still leave some unexploited computational power, we also propose to combine them with right-hand side pipelining to further improve parallelism and achieve significant speed-ups. Examples are presented on high-frequency Helmholtz and Maxwell problems, in two and three dimensions, to demonstrate the properties of our improvements on parallel computer architectures.

Author(s):  
Abul Mukid Mohammad Mukaddes ◽  
Masao Ogino ◽  
Ryuji Shioya ◽  
Hiroshi Kanayama

Abstract— The domain decomposition method involves the finite element solution of problems in the parallel computer. The finite element discretization leads to the solution of large systems of linear equation whose matrix is naturally sparse. The use of proper storing techniques for sparse matrix is fundamental especially when dealing with large scale problems typical of industrial applications. The aim of this research is to review the sparsity pattern of the matrices originating from the discretization of the elasto-plastic and thermal-convection problems. Some practical strategies dealing with sparsity pattern in the finite element code of adventure system are recalled. Several efficient storage schemes to store the matrix originating from elasto-plastic and thermal-convection problems have been proposed. In the proposed technique, inherent block pattern of the matrix is exploited to locate the matrix element. The computation in the high performance computer shows better performance compared to the conventional skyline storage method used by the most of the researchers.


Sign in / Sign up

Export Citation Format

Share Document