scholarly journals Mean flow and turbulence measurements in the near field of a fighter aircraft wing-tip vortex at high Reynolds number and transonic flow conditions

1999 ◽  
Vol 7 ◽  
pp. 120-129
Author(s):  
Fenella de Souza ◽  
Ben H.K. Lee
Author(s):  
Micheál S O’Regan ◽  
Philip C Griffin ◽  
Trevor M Young

The near-field (up to three chord lengths) development of a wing-tip vortex is investigated both numerically and experimentally. The research was conducted in a medium speed wind tunnel on a NACA 0012 square tip half-wing at a Reynolds number of 3.2 × 105. A full Reynolds stress turbulence model with a hybrid unstructured grid was used to compute the wing-tip vortex in the near field while an x-wire anemometer and five-hole probe recorded the experimental results. The mean flow of the computed vortex was in good agreement with experiment as the circulation parameter was within 6% of the experimental value at x/ c = 0 for α = 10° and the crossflow velocity magnitude was within 1% of the experimental value at x/ c = 1 for α = 5°. The trajectory of the computed vortex was also in good agreement as it had moved inboard by the same amount (10% chord) as the experimental vortex at the last measurement location. The axial velocity excess is under predicted for α = 10°, whereas the velocity deficit is in relatively good agreement for α = 5°. The computed Reynolds shear stress component 〈 u′v′〉 is in good agreement with experiment at x/ c = 0 for α = 5°, but is greatly under predicted further downstream and at all locations for α = 10°. It is thought that a lack of local grid refinement in the vortex core and deficiencies in the Reynolds stress turbulence model may have led to errors in the mean flow and turbulence results respectively.


Author(s):  
Noriyuki Furuichi ◽  
Kar-Hooi Cheong ◽  
Yoshiya Terao ◽  
Shinichi Nakao ◽  
Keiji Fujita ◽  
...  

Discharge coefficients for three flow nozzles based on ASME PTC 6 are measured under many flow conditions at AIST, NMIJ and PTB. The uncertainty of the measurements is from 0.04% to 0.1% and the Reynolds number range is from 1.3×105 to 1.4×107. The discharge coefficients obtained by these experiments is not exactly consistent to one given by PTC 6 for all examined Reynolds number range. The discharge coefficient is influenced by the size of tap diameter even if at the lower Reynolds number region. Experimental results for the tap of 5 mm and 6 mm diameter do not satisfy the requirements based on the validation procedures and the criteria given by PTC 6. The limit of the size of tap diameter determined in PTC 6 is inconsistent with the validation check procedures of the calibration result. An enhanced methodology including the term of the tap diameter is recommended. Otherwise, it is recommended that the calibration test should be performed at as high Reynolds number as possible and the size of tap diameter is desirable to be as small as possible to obtain the discharge coefficient with high accuracy.


2017 ◽  
Vol 54 (4) ◽  
pp. 1552-1565 ◽  
Author(s):  
Daniel Guy Schauerhamer ◽  
Stephen K. Robinson

Sign in / Sign up

Export Citation Format

Share Document