scholarly journals An Overview of Wind Resource Assessments With Special Reference to The Emirate of Ajman, UAE

2021 ◽  
Vol 6 ◽  
pp. 32
Author(s):  
Kais Muhammed Fasel ◽  
Abdul Salam K. Darwish ◽  
Peter Farrell ◽  
Hussein Kazem

The continuous increase in clean energy demand and reduced CO2 emissions in the UAE and specifically the Emirate of Ajman has put an extreme challenge to the Government. Ajman is one of the seven emirates constituting the United Arab Emirates (UAE). Ajman is located along the Arabian Gulf on its West and bordered by the Emirate of Sharjah on its North, South, and East. The government is taking huge steps in including sustainability principles and clean energy in all of its developments. Successful implementation of green architecture law decree No 10 of 2018 effectively is a sign of such an initiative. Renewable energy sources in this country have had two folds of interest in solar and wind. Recent research works supported the feasibility of using wind energy as an alternative clean source of energy. Site-specific and accurate wind speed information is the first step in the process of bankable wind potential and wind Atlas. This study has compared how wind speed and its distribution varies for similar offshore and onshore locations between two different mesoscale data sources. Also, discussed the main environmental characteristics of Ajman that would influence the implementation of a major wind energy project. In addition, the study made a brief critical overview of the major studies undertaken in the Middle East and North Africa (MENA) region on wind resource assessment. Finally, based on the results, the study makes conclusions, recommendations and a way forward for a bankable wind resources assessment in the Emirate of Ajman. This paper would alert the wind energy industry about the consequence of not considering the best error corrected site specific suitable wind resource data along with other environmental characteristics. The study results show that for offshore, there is 2.9 m/s and for Onshore 4.9 m/s variations in wind speed at the same location between ECMWF Reanalysis (ERA-5) and NASA Satellite data. Hence It is concluded that error corrected site-specific wind resource assessment is mandatory for assessing the available bankable wind potential since there are considerable variations in wind speed distributions between mesoscale data sets for similar locations. The study also identifies that the Emirate of Ajman has limited space for onshore wind farms; hence the offshore site seems to have good potential that can be utilised for energy generation. However, individual wind turbines can be installed for exploiting the available site-specific onshore wind energy. Finally, the study recommends a way forward for a comprehensive wind resource assessment to help the Emirate of Ajman form a sustainable wind power generation policy.

Wind is a powerful and renewable source of energy that flows in every corner of the surface of the planet. As the world moves towards renewable and alternate energy sources, the potential of wind energy has been recognized and methods to use it to its maximum potential are being explored. India has been harnessing wind power over the years, but only lately, it has sent an ambitious target of achieving 60 gigawatts (GW) of wind installed capacity by 2022. The government has issued several tenders to invite private players or Independent Power Producers (IPPs) to develop wind energy projects. Many foreign investors and the Private Equity players have shown interest in investing in this growing renewable energy (RE) market in India. However, developing a wind project comes with lot many challenges as compared to any other RE project. These challenges range from land availability to seeking grid connectivity approvals and evacuation of the power. Along with this, the current reverse bidding process for the tariffs, have made the per unit tariffs to cost as low as INR 2.4. Hence, it is important to consider the technical and commercial feasibility of the project to function at these tariffs. This paper studies the current scenario of wind energy in the Indian market and analysis the potential for the development of wind projects. It also analyses the technical and commercial feasibility of the project by assuming a 300 MW project, having INR 2.5 as tariff, using Wind Resource Assessment (WRA) and Financial Model.


2015 ◽  
Vol 12 (1) ◽  
pp. 85-89 ◽  
Author(s):  
A. Giyanani ◽  
W. Bierbooms ◽  
G. van Bussel

Abstract. Remote sensing of the atmospheric variables with the use of Lidar is a relatively new technology field for wind resource assessment in wind energy. A review of the draft version of an international guideline (CD IEC 61400-12-1 Ed.2) used for wind energy purposes is performed and some extra atmospheric variables are taken into account for proper representation of the site. A measurement campaign with two Leosphere vertical scanning WindCube Lidars and metmast measurements is used for comparison of the uncertainty in wind speed measurements using the CD IEC 61400-12-1 Ed.2. The comparison revealed higher but realistic uncertainties. A simple model for Lidar beam averaging correction is demonstrated for understanding deviation in the measurements. It can be further applied for beam averaging uncertainty calculations in flat and complex terrain.


Author(s):  
Houdayfa Ounis ◽  
Nawel Aries

The present study aims to present a contribution to the wind resource assessment in Algeria using ERA-Interim reanalysis. Firstly, the ERA-Interim reanalysis 10 m wind speed data are considered for the elaboration of the mean annual 10 m wind speed map for a period starting from 01-01-2000 to 31-12-2017. Moreover, the present study intends to highlight the importance of the descriptive statistics other than the mean in wind resource assessment. On the other hand, this study aims also to select the proper probability distribution for the wind resource assessment in Algeria. Therefore, nine probability distributions were considered, namely: Weibull, Gamma, Inverse Gaussian, Log Normal, Gumbel, Generalized Extreme Value (GEV), Nakagami, Generalized Logistic and Pearson III. Furthermore, in combination with the distribution, three parameter estimation methods were considered, namely, Method of Moment, Maximum Likelihood Method and L-Moment Method. The study showed that Algeria has several wind behaviours due to the diversified topographic, geographic and climatic properties. Moreover, the annual mean 10 m wind speed map showed that the wind speed varies from 2.3 to 5.3 m/s, where 73% of the wind speeds are above 3 m/s. The map also showed that the Algerian Sahara is windiest region, while, the northern fringe envelopes the lowest wind speeds. In addition, it has been shown that the study of the mean wind speeds for the evaluation of the wind potential alone is not enough, and other descriptive statistics must be considered. On the other hand, among the nine considered distribution, it appears that the GEV is the most appropriate probability distribution. Whereas, the Weibull distribution showed its performance only in regions with high wind speeds, which, implies that this probability distribution should not be generalized in the study of the wind speed in Algeria.


2008 ◽  
Vol 32 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Hanan Al Buflasa ◽  
David Infield ◽  
Simon Watson ◽  
Murray Thomson

The geographical distribution of wind speed (the wind atlas) for the kingdom of Bahrain is presented, based on measured data and on calculations undertaken using WAsP,. The data used were recorded by the Meteorological Directorate at a weather station situated at Bahrain International Airport, taken on an hourly basis for a period of time extended for ten years. These data indicate an annual mean wind speed of 4.6 m/s at 10 m height and mean Weibull scale and shape parameters C and k of 5.2 m/s and 1.9 respectively. At a typical wind turbine hub height of sixty metres, these values are extrapolated to 6.9 m/s, 7.8 m/s and 1.8 respectively, which suggests that the area has a good wind resource. The wind atlas shows that several locations in the less populated central and southern regions of the main island of the archipelago of Bahrain are potentially suitable for wind energy production.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Matthew A. Lackner ◽  
Anthony L. Rogers ◽  
James F. Manwell

This paper presents a mathematical framework to properly account for uncertainty in wind resource assessment and wind energy production estimation. A meteorological tower based wind measurement campaign is considered exclusively, in which measure-correlate-predict is used to estimate the long-term wind resource. The evaluation of a wind resource and the subsequent estimation of the annual energy production (AEP) is a highly uncertain process. Uncertainty arises at all points in the process, from measuring the wind speed to the uncertainty in a power curve. A proper assessment of uncertainty is critical for judging the feasibility and risk of a potential wind energy development. The approach in this paper provides a framework for an accurate and objective accounting of uncertainty and, therefore, better decision making when assessing a potential wind energy site. It does not investigate the values of individual uncertainty sources. Three major aspects of site assessment uncertainty are presented here. First, a method is presented for combining uncertainty that arises in assessing the wind resource. Second, methods for handling uncertainty sources in wind turbine power output and energy losses are presented. Third, a new method for estimating the overall AEP uncertainty when using a Weibull distribution is presented. While it is commonly assumed that the uncertainty in the wind resource should be scaled by a factor between 2 and 3 to yield the uncertainty in the AEP, this work demonstrates that this assumption is an oversimplification and also presents a closed form solution for the sensitivity factors of the Weibull parameters.


2016 ◽  
Vol 41 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Djordje Romanic ◽  
Ashkan Rasouli ◽  
Horia Hangan

Urban wind resource assessment in changing climate has not been studied so far. This study presents a methodology for microscale numerical modelling of urban wind resource assessment in changing climate. The methodology is applied for a specific urban development in the city of Toronto, ON, Canada. It is shown that the speed of the southwest winds, that is, the most frequent winds increased for .8 m s−1 in the period from 1948 to 2015. The generated wind energy maps are used to estimate the influences of climate change on the available wind energy. It is shown that the geometry of irregularly spaced and located obstacles in urban environments has to be taken into consideration when performing studies on urban wind resource assessment in changing climate. In the analysed urban environment, peak speeds are more affected by climate change than the mean speeds.


Wind is random in nature both in space and in time. Several technologies are used in wind resource assessment (WRA).The appropriate probability distribution used to calculate the available wind speed at that particular location and the estimation of parameters is the essential part in installing wind farms. The improved mixture Weibull distribution is proposed model which is the mixture of two and three parameter Weibull distribution with parameters including scale, shape, location and weight component. The basic properties of the proposed model and estimation of parameters using various methods are discussed.


Sign in / Sign up

Export Citation Format

Share Document