scholarly journals Anti-Müllerian hormone and freemartinism : inhibition of germ cell development and induction of seminiferous cord-like structures in rat fetal ovaries exposed in vitro to purified bovine AMH

1988 ◽  
Vol 28 (4B) ◽  
pp. 1113-1128 ◽  
Author(s):  
B. VIGIER ◽  
F. WATRIN ◽  
S. MAGRE ◽  
D. TRAN ◽  
O. GARRIGOU ◽  
...  
2008 ◽  
Vol 14 (9) ◽  
pp. 501-511 ◽  
Author(s):  
A. J. Childs ◽  
P. T.K. Saunders ◽  
R. A. Anderson

2004 ◽  
Vol 16 (9) ◽  
pp. 253
Author(s):  
S. M. Degen ◽  
P. G. Stanton ◽  
K. L. Loveland ◽  
S. J. Meachem

FSH is a key determinant of adult sperm output influencing both Sertoli and germ cell development. The aim of this study was to assess the impact of FSH action on Sertoli and germ cell proliferation and survival in vitro, and to identify FSH-regulated genes that may underpin these responses. Testis fragments from 17-day-old rats were cultured with recombinant human FSH for 2 or 24 h and then labelled with bromodeoxyuridine (BrdU) to identify proliferating cells. The testis fragments were then processed for analysis of cell numbers by stereology, BrdU incorporation by immunohistochemistry, and apoptosis by TUNEL. The TUNEL assay revealed that without FSH, spermatogonial apoptosis was induced to 195% and 179% (P�<�0.05) compared to fragments with FSH after 2 and 24 h, respectively. No difference in apoptosis was observed in spermatocyte or Sertoli cell populations at these time points. No differences in Sertoli or germ cell proliferation were observed with or without FSH. To understand how FSH mediates spermatogonial apoptosis the response of 5 testicular genes of interest was examined. Expression of cyclin D2 (cell cycle, G1-S), N-cadherin (N-Cad; adhesion molecule), Bax (pro-apoptotic), Bcl-w (anti-apoptotic), and stem cell factor (SCF; pro-apoptotic and other functions) was elevated to 151%, 348%, 209%, 258%, and 198%, respectively (all P�<�0.001), in fragments cultured without FSH for 24 h, compared to fragments with FSH. No gene expression differences were observed at 2 h, except for SCF, which was elevated to 135% (P�<�0.01). In conclusion, these studies have examined apoptosis and proliferation activities simultaneously in testis fragments in vitro, and demonstrated that FSH withdrawal induces both spermatogonial apoptosis and expression of testicular genes known to be involved in cell survival. This model will now be used to further investigate FSH-mediation of Sertoli and germ cell development.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. F79-F91 ◽  
Author(s):  
Go Nagamatsu ◽  
Katsuhiko Hayashi

Reconstitution in culture of biological processes, such as differentiation and organization, is a key challenge in regenerative medicine, and one in which stem cell technology plays a central role. Pluripotent stem cells and spermatogonial stem cells are useful materials for reconstitution of germ cell development in vitro, as they are capable of differentiating into gametes. Reconstitution of germ cell development, termed in vitro gametogenesis, will provide an experimental platform for a better understanding of germ cell development, as well as an alternative source of gametes for reproduction, with the potential to cure infertility. Since germ cells are the cells for ‘the next generation’, both the culture system and its products must be carefully evaluated. In this issue, we summarize the progress in in vitro gametogenesis, most of which has been made using mouse models, as well as the future challenges in this field.


2009 ◽  
Vol 117 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Romain Lambrot ◽  
Vincent Muczynski ◽  
Charlotte Lécureuil ◽  
Gaëlle Angenard ◽  
Hervé Coffigny ◽  
...  

Aging ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 1556-1574 ◽  
Author(s):  
Shun-Feng Cheng ◽  
Xun-Si Qin ◽  
Ze-Li Han ◽  
Xiao-Feng Sun ◽  
Yan-Ni Feng ◽  
...  

Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. R205-R213 ◽  
Author(s):  
Ikko Kawashima ◽  
Kazuhiro Kawamura

The mammalian ovary is an organ that controls female germ cell development, storing them and releasing mature oocytes for transporting to the oviduct. During the fetal stage, female germ cells change from a proliferative state to meiosis before forming follicles with the potential for the growth of surrounding somatic cells. Understanding of molecular and physiological bases of germ cell development in the fetal ovary contributed not only to the elucidation of genetic disorders in primary ovarian insufficiency (POI), but also to the advancement of novel treatments for patients with POI. Accumulating evidence indicates that mutations inNOBOX,DAZLandFIGLAgenes are associated with POI. In addition, cell biology studies revealed the important roles of these genes as essential translational factors for germ cell development. Recent insights into the role of the PI3K (phosphatidylinositol 3-kinase)-Akt signaling pathway in primordial follicle activation allowed the development of a new infertility treatment, IVA (in vitroactivation), leading to successful pregnancy/delivery in POI patients. Furthermore, elucidation of genetic dynamics underlying female germ cell development could allow regeneration of oocytes from ES (embryonic stem)/iPS (induced pluripotent stem) cells in mammals. The purpose of this review is to summarize basic findings related to female germ cell development and potential clinical implications, especially focusing on POI etiologies. We also summarize evolving new POI therapies based on IVA as well as oocyte regeneration.


Sign in / Sign up

Export Citation Format

Share Document