fetal testis
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 23)

H-INDEX

43
(FIVE YEARS 3)

Reproduction ◽  
2022 ◽  
Author(s):  
Richard G Lea ◽  
Beatrice Mandon-Pepin ◽  
Benoit Loup ◽  
Elodie Poumerol ◽  
Luc Jouneau ◽  
...  

Exposure of the fetal testis to numerous individual environmental chemicals is frequently associated with dysregulated development, leading to impaired adult reproductive competence. However, ‘real-life’ exposure involves complex mixtures of environmental chemicals (ECs). Here we test the consequences, for the male fetus, of exposing pregnant ewes to EC mixtures derived from pastures treated with biosolids fertiliser (processed human sewage). Fetal testes from continuously exposed ewes were either unaffected at Day 80 or exhibited a reduced area of testis immunostained for CYP17A1 protein at Day 140. Fetal testes from Day 140 pregnant ewes exposed transiently for 80 day periods during early (0-80 days), mid (30-110 days) or late (60-140 days) pregnancy, had fewer Sertoli cells and reduced testicular area stained for CYP17A1. Male fetuses from ewes exposed during late pregnancy also exhibited reduced fetal body, adrenal and testis mass, anogenital distance and lowered testosterone: collectively indicative of an anti-androgenic effect. Exposure limited to early gestation induced more testis transcriptome changes than observed for continuously exposed Day 140 fetuses. These data suggest that a short period of EC exposure does not allow sufficient time for the testis to adapt. Consequently, testicular transcriptomic changes induced during the first 80 days of gestation may equate with phenotypic effects observed at Day 140. In contrast, relatively fewer changes in the testis transcriptome in fetuses exposed continuously to ECs throughout gestation is associated with less severe consequences. Unless corrected by or during puberty, these differential effects would predictably have adverse outcomes for adult testicular function and fertility.


2021 ◽  
pp. 1-12
Author(s):  
Mami Miyado ◽  
Maki Fukami ◽  
Tsutomu Ogata

<i>MAMLD1</i> (alias <i>CXorf6</i>) was first documented in 2006 as a causative gene of 46,XY differences/disorders of sex development (DSD). <i>MAMLD1</i>/<i>Mamld1</i> is expressed in the fetal testis and is predicted to enhance the expression of several Leydig cell-specific genes. To date, hemizygous <i>MAMLD1</i> variants have been identified in multiple 46,XY individuals with hypomasculinized external genitalia. Pathogenic <i>MAMLD1</i> variants are likely to cause genital abnormalities at birth and are possibly associated with age-dependent deterioration of testicular function. In addition, some <i>MAMLD1</i> variants have been identified in 46,XX individuals with ovarian dysfunction. However, recent studies have raised the possibility that <i>MAMLD1</i> variants cause 46,XY DSD and ovarian dysfunction as oligogenic disorders. Unsolved issues regarding MAMLD1 include the association between <i>MAMLD1</i> variants and 46,XX testicular DSD, gene-gene interactions in the development of <i>MAMLD1</i>-mediated DSD, and intracellular functions of MAMLD1.


Reproduction ◽  
2021 ◽  
Author(s):  
Hui Li ◽  
Daniel J. Spade

Fetal development of the mammalian testis relies on a series of interrelated cellular processes: commitment of somatic progenitor cells to Sertoli and Leydig cell fate, migration of endothelial cells and Sertoli cells, differentiation of germ cells, deposition of basement membrane, and establishment of cell-cell contacts, including Sertoli-Sertoli and Sertoli-germ cell contacts. These processes are orchestrated by intracellular, endocrine, and paracrine signaling processes. Because of this complexity, testis development can be disrupted by a variety of environmental toxicants. Toxicity of phthalic acid esters (phthalates) to the fetal testis has been the subject of extensive research for two decades, and phthalates have become an archetypal fetal testis toxicant. Phthalates disrupt the seminiferous cord formation and maturation, Sertoli cell function, biosynthesis of testosterone in Leydig cells, and impair germ cell survival and development, producing characteristic multinucleated germ cells. However, the mechanisms responsible for these effects are not fully understood. This review describes current knowledge of the adverse effects of phthalates on the fetal testis and their associated windows of sensitivity, and compares and contrasts the mechanisms by which toxicants of current interest, bisphenol A and its replacements, analgesics, and perfluorinated alkyl substances, alter testicular developmental processes. Working towards a better understanding of the molecular mechanisms responsible for phthalate toxicity will be critical for understanding the long-term impacts of environmental chemicals and pharmaceuticals on human reproductive health.


Endocrine ◽  
2021 ◽  
Author(s):  
Francesco Cargnelutti ◽  
Andrea Di Nisio ◽  
Francesco Pallotti ◽  
Iva Sabovic ◽  
Matteo Spaziani ◽  
...  

2021 ◽  
Vol 33 (2) ◽  
pp. 150
Author(s):  
H. Baldwin ◽  
M. Zhang ◽  
J. Current ◽  
J. Yao

Factors present in the oocyte and surrounding follicular cells aid in the attainment of oocyte competence. Agouti-signalling protein (ASIP) is a known regulator of melanocyte function through binding to melanocortin receptors including MC1R and MC4R. Additionally, ASIP has been classified as an adipokine due to a link with insulin resistance and obesity in humans. In mice, expression is limited to hair follicles where ASIP regulates hair pigmentation. In cattle, however, ASIP mRNA has been detected in a variety of tissues, including adipose, skin, heart, testis, and the ovary. Despite ovarian expression, the role of ASIP in reproduction remains undetermined. Bovine ASIP is a secreted protein consisting of 133 amino acids. The aim of this experiment was to provide a detailed description of the ASIP expression profile within the bovine ovary and during early embryonic development. Reverse transcription PCR (RT-PCR) was conducted to analyse ASIP, MC1R, and MC4R mRNA expression. Samples examined included fetal ovaries from gestational day 90 to 250, adult ovary, fetal testis, adult testis, and 12 somatic tissues including adrenal, cerebral cortex, gut, heart, intestine, kidney, liver, lung, muscle, pituitary, stomach, and thymus. Amplification of ribosomal protein L19 (RPL19) served as a positive control for all samples. Expression of ASIP was detected in the fetal testis, 9 somatic tissues, and the fetal and adult ovary. In the fetal ovary, ASIP was detected as early as 90 days of gestation and continued throughout gestation. Expression of the ASIP receptors, MC1R and MC4R, were detected exclusively in the fetal ovary. To further characterise ASIP expression, quantitative real-time PCR (RT-qPCR) was utilised to examine samples including germinal vesicle and MII oocytes (pool of 10 oocytes), invitro-produced embryos ranging from the 2-cell to blastocyst stages (pool of 10 embryos), and cumulus and granulosa cells collected from a pool from 5 cumulus–oocyte complexes (COCs) and follicles, respectively. Theca cells from a single follicle were analysed. Samples with cycle threshold values below 35 were considered to express the gene of interest. Of the follicular cells examined, ASIP expression was present in theca, granulosa, and cumulus cells. ASIP expression was detected in both GV and MII oocytes. Early embryonic expression of ASIP was detected in the 2-cell embryo and continued to the blastocyst stage of development. In conclusion, ASIP is present in the bovine adult and fetal ovary, follicular cells including cumulus, granulosa, and theca cells, GV and MII oocytes, and invitro-produced embryos from the 2-cell to blastocyst stages. Future research will focus on identifying the function of ovarian and early embryonic ASIP in cattle.


2020 ◽  
Vol 22 (12) ◽  
pp. 1423-1435
Author(s):  
Daniel H. Nguyen ◽  
Bikem Soygur ◽  
Su-Ping Peng ◽  
Safia Malki ◽  
Guang Hu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ellie Smart ◽  
Joni Macdonald ◽  
Lee B. Smith ◽  
Rod T. Mitchell

Abstract Focal dysgenesis is a consistent feature of testicular dysgenesis syndrome (TDS) in humans. Rodent studies show that perturbation of androgens (e.g. following phthalate exposure) during a fetal masculinisation programming window (MPW) predisposes to a TDS phenotype. This study aimed to determine whether dissociation and reconstitution of rat fetal testis tissue during the MPW can be used to model and manipulate seminiferous cord development, including induction of focal dysgenesis, as described in TDS. Dissociated fetal rat testes were xenotransplanted subcutaneously into recipient mice for 4 weeks. Transplanted mice were treated with vehicle or di-n-butyl-phthalate (DBP, a plasticising chemical known to induce testicular dysgenesis in vivo in rats). Testosterone production by the transplants was measured in recipient mice and immunofluorescence was performed on the retrieved transplants to identify features consistent with focal testicular dysgenesis. Re-aggregation of rat fetal testis tissue xenotransplants during the MPW results in reconstitution of seminiferous cords. Features of focal testicular dysgenesis were present in re-aggregated testis, including ectopic Sertoli cells and intratubular Leydig cells (ITLCs). DBP exposure of recipient mice reduced androgen-dependent seminal vesicle weight (8.3 vs 26.7 mg; p < 0.05), but did not enhance features of focal dysgenesis including number of ITLCs (0.07 vs 0.10 cells/mm2; p > 0.05). We conclude that seminiferous cord reformation during the MPW results in development of focal dysgenesis. The system may be used to separate specific effects (e.g. androgen suppression) of individual chemical exposures from other mechanisms that may be conserved in TDS.


Author(s):  
Lecluze E ◽  
Rolland AD ◽  
Filis P ◽  
Evrard B ◽  
Leverrier-Penna S ◽  
...  

2020 ◽  
Vol 203 ◽  
pp. 111053
Author(s):  
Keyang Wu ◽  
Yang Li ◽  
Peipei Pan ◽  
Zengqiang Li ◽  
Yige Yu ◽  
...  

2020 ◽  
Vol 265 ◽  
pp. 114842
Author(s):  
Leikai Ma ◽  
Jiaying Mo ◽  
Yong Chen ◽  
Linchao Li ◽  
Lubin Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document