Navigating through Perplex Morphologic Changes after Exogenous Hormone Usage

Author(s):  
Ruby J. Chang ◽  
Glorimar Rivera-Colon ◽  
Hao Chen ◽  
Shuang Niu ◽  
Kelley Carrick ◽  
...  
Author(s):  
A. González-Angulo ◽  
S. Armendares-Sagrera ◽  
I. Ruíz de Chávez ◽  
H. Marquez-Monter ◽  
R. Aznar

It is a well documented fact that endometrial hyperplasia and adenocarcinoma may develop in women with Turner's syndrome who had received unopposed estrogen treatment (1), as well as in normal women under contraceptive medication with the sequential regime (2). The purpose of the present study was to characterize the possible changes in surface and glandular epithelium in these women who were treated with a sequential regime for a period of between three and eight years. The aim was to find organelle modifications which may lead to the understanding of the biology of an endometrium under exogenous hormone stimulation. Light microscopy examination of endometrial biopsies of nine patients disclosed a proliferative pattern; in two of these, there was focal hyperplasia. With the scanning electron microscope the surface epithelium in all biopsies showed secretory cells with microvilli alternating with non secretory ciliated cells. Regardless of the day of the cycle all biopsies disclosed a large number of secretory cells rich in microvilli (fig.l) with long and slender projections some of which were branching (fig. 2).


Author(s):  
Michael P. Goheen ◽  
Charles E. Edmiston

The synergistic activity of antimicrobial combinants against aerobic and facultative microorganisms has been well documented. in comparison, few studies have been performed using obligate anaerobic isolates and antimicrobial combinants. For this study clinical strains of Bacteroides fragilis(BF) were selected to investigate both single/combinant drug activity and cellular morphologic changes when BF is exposed to Imipenem (I), Piperacillin (P), Cefpimizole (C), Imipenem/Piperacillin (I+P), and Imipenem/Cefpimizole (I+C).


2020 ◽  
pp. 113140
Author(s):  
Junru Yang ◽  
Zhi Feng ◽  
Wei Liu ◽  
Yuanqing Wang ◽  
Guibin Wang ◽  
...  

1993 ◽  
Vol 71 (16) ◽  
pp. 1382-1390 ◽  
Author(s):  
Eloisa Arbustini ◽  
Maurizia Grasso ◽  
Marta Diegoli ◽  
Ornella Bellini ◽  
Stefano Ghio ◽  
...  

Author(s):  
Shiran Yan ◽  
Jing Chen ◽  
Teng Zhang ◽  
Jian Zhou ◽  
Ge Wang ◽  
...  

AbstractAtherosclerosis (AS) is a dynamic and multi-stage process that involves various cells types, such as vascular smooth muscle cells (VSMCs) and molecules such as microRNAs. In this study, we investigated how miR-338-3p works in the process of AS. To determine how miR-338-3p was expressed in AS, an AS rat model was established and primary rat VSMCs were cultured. Real-time polymerase chain reaction was performed to detect miR-338-3p expression. Markers of different VSMC phenotypes were tested by Western blot. Immunofluorescent staining was employed to observe the morphologic changes of VSMCs transfected with miR-338-3p mimics. A dual luciferase reporter assay system was used to verify that desmin was a target of miR-338-3p. To further identify the role of miR-338-3p in the development of AS, VSMC proliferation and migration were evaluated by EdU incorporation assay, MTT assay, and wound healing assay. miR-338-3p expression was upregulated in the aortic tissues of an AS rat model and in primary rat VSMCs from a later passage. The transfection of miR-338-3p mimics in VSMCs promoted the synthetic cell phenotype. Bioinformatics analysis proposed desmin as a candidate target for miR-338-3p and the dual luciferase reporter assay confirmed in vivo that desmin was a direct target of miR-338-3p. The MTT and EdU incorporation assay revealed increased cell viability when miR-338-3p mimics were transfected. The increased expression of PCNA was a consistent observation, although a positive result was not obtained with respect to VSMC mobility. In AS, miR-338-3p expression was elevated. Elevated miR-338-3p inhibited the expression of desmin, thus promoting the contractile-to-synthetic VSMC phenotypic transition. In addition to morphologic changes, miR-338-3p enhanced the proliferative but not mobile ability of VSMCs. In summary, miR-338-3p promotes the development of AS.


Author(s):  
Jarcy Zee ◽  
Michelle T. McNulty ◽  
Jeffrey B. Hodgin ◽  
Olga Zhdanova ◽  
Sangeeta Hingorani ◽  
...  

2009 ◽  
Vol 36 (6) ◽  
pp. 894-902 ◽  
Author(s):  
Ukihide Tateishi ◽  
Cristina Gamez ◽  
Shaheenah Dawood ◽  
Henry W. D. Yeung ◽  
Massimo Cristofanilli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document