Dual Luciferase Reporter Assay
Recently Published Documents


TOTAL DOCUMENTS

1067
(FIVE YEARS 1017)

H-INDEX

19
(FIVE YEARS 16)

2022 ◽  
Vol 12 (4) ◽  
pp. 747-755
Author(s):  
Shengyong Liu ◽  
Xiangcheng Li

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide with a poor prognosis. Amounting studies revealed that long non-coding RNAs (lncRNAs) show important roles in various biological processes. The purpose of this study was to explore the biological function and potential molecular mechanism of CASC7 in HCC. Methods: CASC7 expression in HCC cell lines was detected by qRT-PCR. The expressions of CASC7 and miR-340-5p were changed by transfection of miR-340-5p mimic, the CASC7 overexpression and knockdown plasmids. The interaction between CASC7 and miR-340-5p was assessed by a Dual-Luciferase reporter assay. The biological functions of CASC7 were evaluated by CCK-8, colony formation assay, ROS assay kit, immunofluorescence and flow cytometry (FCM). Results: CASC7 was upregulated in HCC cell lines. CASC7 overexpression significantly promoted cell proliferation, as well as inhibited apoptosis and oxidative stress. In contrast, CASC7 knockdown could reverse these above changes. The result of the Dual-luciferase reporter assay revealed that CASC7 directly targeted miR-340-5p and negatively regulated its expression. In addition, CASC7 promoted proliferation and inhibited apoptosis of HCC cells through activating Nrf2 pathway by downregulating miR-340-5p. Conclusions: In summary, CASC7 promotes HCC tumorigenesis and progression through the Nrf2 pathway by targeting miR-340-5p, which may provide a new target for therapy of HCC.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Zhang ◽  
Bo Wang ◽  
Yilin Lin ◽  
Yang Yang ◽  
Zhen Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusions The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Lili Zhong ◽  
Xiumin Liu ◽  
Lixing Wang ◽  
Yu Liu ◽  
Duohan Zhang ◽  
...  

Abstract Objective High-grade serous ovarian cancer (HGSOC) is an aggressive gynaecological malignancy and associated with poor prognosis. Here we examined the effects of miR-625-3p on proliferation, treatment, migration and invasion in HGSOC. Methods The proliferation of HGSOC cells was evaluated by MTT assay. Transwell assay was performed to examine migration and matrigel assay were used to assess invasion. The effect of miR-625-3p on cisplatin-induced apoptosis was investigated by Caspase-Glo3/7 assay. The dual-luciferase reporter assay was carried out to confirm the potential binding site. Results Overexpression of miR-625-3p promoted proliferation, and increased migration and invasion in HGSOC cells. MiR-625-3p significantly inhibited cisplatin sensitivity in HGSOC cells. Meanwhile, miR-625-3p decreased cisplatin-induced apoptosis by regulation of BAX and Bcl-2 expression. Furthermore, aberrant expression of miR-625-3p changed PTEN expression by directly binding to 3’UTR of PTEN. Further study showed miR-625-3p expression was higher in human HGSOC tissue than normal ovarian tissues and associated with higher clinical stage. Conclusions miR-625-3p promotes HGSOC growth, involves chemotherapy resistance and might serve as a potential biomarker to predict chemotherapy response and prognosis in HGSOC.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaokun Liu ◽  
Jingjing Duan ◽  
Dan Huo ◽  
Qinqin Li ◽  
Qiaoyun Wang ◽  
...  

Paeonia qiui is a wild species of tree peony native to China. Its leaves are purplish red from the bud germination to the flowering stage, and anthocyanin is the main pigment in purplish red leaves. However, the anthocyanin synthesis regulation mechanism in tree peony leaves remains unclear. In this study, an R2R3-MYB, PqMYB113 was identified from the leaves of P. qiui. Phylogenetic analysis revealed that PqMYB113 clustered with Liquidambar LfMYB113 and grape VvMYBA6. Subcellular location analysis showed that PqMYB113 was located in the cell nucleus. The transient reporter assay suggested that PqMYB113 was a transcriptional activator. The overexpression of PqMYB113 in Arabidopsis thaliana and tobacco (Nicotiana tabacum) resulted in increased anthocyanin accumulation and the upregulation of CHS, F3H, F3’H, DFR, and ANS. The dual luciferase reporter assay showed that PqMYB113 could activate the promoters of PqDFR and PqANS. Bimolecular fluorescence complementation assays and yeast two-hybrid assays suggested that PqMYB113 could form a ternary MBW complex with PqbHLH1 and PqWD40 cofactors. These results provide insight into the regulation of anthocyanin biosynthesis in tree peony leaves.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhi Qiao ◽  
Jinfeng Li ◽  
Hongwei Kou ◽  
Xiangrong Chen ◽  
Deming Bao ◽  
...  

Objective: Osteosarcoma is the most common malignancy in the skeletal system; studies showed an important role of miRNAs in tumorigenesis, indicating miRNAs as possible therapeutic molecules. This study found abnormal hsa-miR-557 expression levels in osteosarcoma and tried to explore the potential function and the mechanism.Methods: Differential expression genes of osteosarcoma were analyzed using GSE28423 from the GEO database. Survival analysis of miRNAs was conducted with data obtained from the TARGET-OS database. STRING and miRDIP were used to predict target genes of hsa-miR-557; KRAS was then verified using dual-luciferase reporter assay. Expression of genes was detected by qPCR, and levels of proteins were detected by Western blot. The proliferation ability of cells was detected by CCK-8 and cell cycle analysis. Tumor formation assay in nude mice was used to detect the influence of osteosarcoma by hsa-miR-557 in vivo.Results: Analysis from the GEO and TARGET databases found 12 miRNAs that are significantly related to the osteosarcoma prognosis, 7 downregulated (hsa-miR-140-3p, hsa-miR-564, hsa-miR-765, hsa-miR-1224-5p, hsa-miR-95, hsa-miR-940, and hsa-miR-557) and 5 upregulated (hsa-miR-362-3p, hsa-miR-149, hsa-miR-96, hsa-miR-744, and hsa-miR-769-5p). CCK-8 analysis and cell cycle analysis found that hsa-miR-557 could significantly inhibit the proliferation of osteosarcoma cells. The tumor formation assay in nude mice showed that tumor sizes and weights were inhibited by hsa-miR-557 transfection. Further studies also proved that hsa-miR-557 could target the 3′UTR of KRAS and modulate phosphorylation of downstream proteins.Conclusion: This study showed that hsa-miR-557 could inhibit osteosarcoma growth both in vivo and in vitro, by modulating KRAS expression.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yang Mo ◽  
Qin Lu ◽  
Qi Zhang ◽  
Jie Chen ◽  
Youming Deng ◽  
...  

Introduction. Colorectal cancer (CRC), a common digestive tract tumor that contains colon and rectal cancer, is one of the three most common cancers globally. circRNAs are involved in the occurrence and development of CRC, but the mechanism of how they participate in this process remains unclear. Methods. We adopted PCR for expression measure, CCK-8 for cell proliferation detection, Transwell for cell migration and invasion detection, and dual-luciferase reporter assays to detect the potential downstream targets of CCDC66 in CRC. Results. This study showed that circRNA CCDC66 was overexpressed in CRC tissues, and after knockdown, it inhibited the proliferation, migration, and invasion of CRC cells (RKO and HCT-116) in vitro. In addition, the dual-luciferase reporter assay showed that there was a binding site between circCCDC66 and miR-370, as well as between miR-370 and murine double minute 4 (MDM4). That is, circCCDC66 upregulated the expression of MDM4 through competitively binding to miR-370. The expression of circCCDC66 in CRC tissues was positively correlated with MDM4 and negatively correlated with miR-370. Conclusion. In summary, our results indicate that circCCDC66 is a key upregulation of CRC. circCCDC66 upregulates MDM4 through competitive binding to miR-370, thereby enhancing the metastatic ability of CRC cells and promoting the development of CRC.


2022 ◽  
Author(s):  
Jing Chen ◽  
Xuesong Zhao ◽  
Shanhong Ni ◽  
Yuanyuan Zhang ◽  
Xiuli Wu ◽  
...  

This study investigated if artemisinin-chrysosplenetin combination (ART-CHR) improved ART antimalarial efficacy against resistant Plasmodium berghei K173 via depressing host ABC transporter and potential molecular mechanism. Parasitaemia% and inhibition% were calculated and gene/protein expressions of ABC transporters or PXR/CAR/NF-κB p52 were detected by Western-blot and RT-qPCR. In vitro transcription of PXR/CAR was studied by dual-luciferase reporter assay. Our data indicated that ART-CHR improved ART efficacy against resistant parasites. P-gp inhibitor verapamil and CHR showed a stronger effect in killing resistant parasites while vehicle and Bcrp inhibitor novobiocin did not. ART activated intestinal ABCB1/ABCG2 and CHR inhibited them. ART decreased Bcrp protein whereas CHR increased it. ART ascended ABCC1/ABCC4/ABCC5 mRNA but ART-CHR descended them. CHR as well as rifampin (RIF) or 5-fluorouracil (5-FU) increased transcription levels of PXR/CAR while showed a versatile regulation on in vivo hepatic and enternal PXR/CAR in Mdr1a+/+ (WT) or Mdr1a-/- (KO) mice infected with sensitive or resistant parasites. Oppositely, hepatic and enteric N-7κB p52 mRNA was conformably decreased in WT but increased in KO-resistant mice. NF-κB pathway should potentially involved in the mechanism of CHR on inhibiting ABC transporters and ART resistance while PXR/CAR play a more complicated role in this mechanism.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Dianbo Long ◽  
Yiyang Xu ◽  
Guping Mao ◽  
Ruobing Xin ◽  
Zengfa Deng ◽  
...  

AbstracttRNA-derived fragments (tRFs) are new noncoding RNAs, and recent studies have shown that tRNAs and tRFs have important functions in cell metabolism via posttranscriptional regulation of gene expression. However, whether tRFs regulate cellular metabolism of the anterior cruciate ligament (ACL) remains elusive. The aim of this study was to investigate the role and action mechanism of tRFs in ACL cell metabolism. A tRF array was used to determine tRF expression profiles in different human ACL cells, and quantitative real-time polymerase chain reaction and fluorescence in situ hybridisation were used to determine TRF365 expression. ACL cells were transfected with a TRF365 mimic or a TRF365 inhibitor to determine whether TRF365 regulates IKBKB expression. A rescue experiment and dual-luciferase reporter assay were conducted to determine whether the 3′-untranslated region (UTR) of IKBKB has a TRF365-binding site. TRF365 was weakly expressed in osteoarthritis (OA) ACL and interleukin-1β-treated ACL cells. IKBKB was highly expressed in OA ACL and interleukin-1β-treated ACL cells; transfection with the TRF365 mimic suppressed IKBKB expression, whereas transfection with the TRF365 inhibitor had the opposite effect. A dual-luciferase reporter assay showed that TRF365 silenced the expression of IKBKB by binding to its 3′-UTR. Thus, TRF365 regulates the metabolism of ACL cells by targeting IKBKB. In summary, TRF365 may provide a new direction for the study of ACL degeneration and on the pathophysiological process of OA.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Changyu Zhu ◽  
Xiaolei Jiang ◽  
Hua Xiao ◽  
Jianmei Guan

AbstractRadioresistance prevails as one of the largest obstacles in the clinical treatment of nasopharyngeal carcinoma (NPC). Meanwhile, tumor-derived extracellular vesicles (TEVs) possess the ability to manipulate radioresistance in NPC. However, its mechanism remains to be further explored. Therefore, the current study set out to explore the mechanism of microRNA (miR)-142-5p delivered by TEVs in regard to the radiosensitivity of NPC. Firstly, peripheral blood samples were collected from patients with radioresistance and radiosensitivity, followed by RT-qPCR detection of miR-142-5p expression. A dual-luciferase reporter assay was carried out to elucidate the targeting relationship of miR-142-5p with HGF and EGF. In addition, radiotherapy-resistant NPC cell models were established by screening NPC cells with gradient increasing radiation exposure, and co-incubated with EVs isolated from miR-142-5p mimic-transfected NPC cells, followed by overexpression of HGF and EGF. Moreover, cell viability was detected by means of MTS, cell proliferation with a colony formation assay, cell apoptosis with flow cytometry, and expression patterns of related genes with the help of Western blot analysis. NPC xenotransplantation models in nude mice were also established by subcutaneous injection of 5-8FR cells to determine apoptosis, tumorigenicity, and radiosensitivity in nude mice. It was found that miR-142-5p was poorly expressed in peripheral blood from NPC patients with radioresistance. Mechanistic experimentation illustrated that miR-142-5p inversely targeted HGF and EGF to inactivate the HGF/c-Met and EGF/EGFR pathways, respectively. NPC cell apoptosis was observed to be augmented, while their radioresistance and proliferation were restricted by EVs-miR-142-5p or HGF silencing, or EGF silencing. Furthermore, EVs-miR-142-5p inhibited growth and radioresistance and accelerated the apoptosis of radiotherapy-resistant NPC cells in nude mice by inhibiting the HGF/c-Met and EGF/EGFR pathways. Collectively, our findings indicated that TEVs might inhibit the HGF/c-Met and EGF/EGFR pathways by delivering miR-142-5p into radiotherapy-resistant NPC cells to enhance radiosensitivity in NPC.


2022 ◽  
Author(s):  
Liming Jin ◽  
Zhaoxia Zhang ◽  
Zhang Wang ◽  
Xiaojun Tan ◽  
Zhaoying Wang ◽  
...  

Abstract Background: CSCs play an important role in tumor development. Some studies have demonstrated that piRNAs participate in the progression of various cancers. However, the detailed function of piRNAs in CSCs requires further investigation. This study aimed to investigate the significance of some piRNAs in Piwil2-iCSCs. Methods and Results: Differentially expressed piRNAs in Piwil2-iCSCs were screened by high-throughput sequencing. Target genes were predicted by the miRanda algorithm and subjected to GO and KEGG analysis. One of the differential piRNAs, novel piRNA MW557525, was transfected and its target gene NOP56 was silenced in Piwil2-iCSCs, respectively. RT-qPCR, western blot and dual luciferase reporter assay were used to investigate the interaction of piRNA MW557525 and NOP56. We identified the effect of piRNA MW557525 and NOP56 knockdown on cell proliferation, migration, invasion, and apoptosis via CCK-8, transwell assay, and flow cytometry. The expressions of CD24, CD133, KLF4, and SOX2 were detected via WB. The results showed that piRNA MW557525 was negatively correlated with NOP56, and it promoted the proliferation, migration, invasion, and inhibited apoptosis in Piwil2-iCSCs, and it also promoted the expressions of CD24, CD133, KLF4, and SOX2, while NOP56 showed the opposite effect. Conclusions: These findings suggested that novel piRNA MW557525 might be a novel therapeutic target in Piwil2-iCSCs.


Sign in / Sign up

Export Citation Format

Share Document