reporter assay
Recently Published Documents





2022 ◽  
Vol 12 (4) ◽  
pp. 747-755
Shengyong Liu ◽  
Xiangcheng Li

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide with a poor prognosis. Amounting studies revealed that long non-coding RNAs (lncRNAs) show important roles in various biological processes. The purpose of this study was to explore the biological function and potential molecular mechanism of CASC7 in HCC. Methods: CASC7 expression in HCC cell lines was detected by qRT-PCR. The expressions of CASC7 and miR-340-5p were changed by transfection of miR-340-5p mimic, the CASC7 overexpression and knockdown plasmids. The interaction between CASC7 and miR-340-5p was assessed by a Dual-Luciferase reporter assay. The biological functions of CASC7 were evaluated by CCK-8, colony formation assay, ROS assay kit, immunofluorescence and flow cytometry (FCM). Results: CASC7 was upregulated in HCC cell lines. CASC7 overexpression significantly promoted cell proliferation, as well as inhibited apoptosis and oxidative stress. In contrast, CASC7 knockdown could reverse these above changes. The result of the Dual-luciferase reporter assay revealed that CASC7 directly targeted miR-340-5p and negatively regulated its expression. In addition, CASC7 promoted proliferation and inhibited apoptosis of HCC cells through activating Nrf2 pathway by downregulating miR-340-5p. Conclusions: In summary, CASC7 promotes HCC tumorigenesis and progression through the Nrf2 pathway by targeting miR-340-5p, which may provide a new target for therapy of HCC.

2022 ◽  
Vol 12 (3) ◽  
pp. 461-470
Gang Quan ◽  
Bo Ren ◽  
Jian Xu ◽  
Jie Zhou ◽  
Guo Wu ◽  

<sec> <title>Objective:</title> This study was designed to probe the influence and mechanism of lncRNA HOTAIR on migration, apoptosis and proliferation of hepatocellular carcinoma (HCC) cells. </sec> <sec> <title>Methods:</title> We evaluated LncRNA HOTAIR expression in HCC tissues and adjacent tissues, and serum of HCC patients and healthy controls. Later, we knocked down lncRNA HOTAIR, and utilized CCK-8 to determine Hep3B cell proliferation, flow cytometry for prospecting Hep3B cell apoptosis, and cell scratch assay for observing Hep3B cell migration.We anticipated the direct target of lncRNA HOTAIR, and adopted luciferase reporter assay to verify. Moreover, we inhibitedmiR-126-5p expression, and rescue experiment for evaluating the influence of si-HOTAIR+miR-126-5p inhibitors on Hep3B cell migration, apoptosis as well as proliferation. </sec> <sec> <title>Results:</title> Our results showed that lncRNA HOTAIR expression in tumor tissues and serum was significantly increased. Moreover, lncRNA HOTAIR inhibition significantly decreased the Hep3B cell proliferation rate, elevated Hep3B cell apoptosis rate, and inhibited Hep3B cell migration. Luciferase reporter assay suggested that miR-126-5p was the direct target of lncRNA HOTAIR. Furthermore, co-transfection of si-HOTAIR+miR-126-5p inhibitor could diminishthe effects of HOTAIR silencing on apoptosis, proliferation and migration. </sec> <sec> <title>Conclusion:</title> Silencing of lncRNA-HOTAIR can inhibit the HCC cell migration and proliferation, and increase the apoptosis by up-regulating miR-126-5p expression. </sec>

2022 ◽  
Vol 12 ◽  
Xiaokun Liu ◽  
Jingjing Duan ◽  
Dan Huo ◽  
Qinqin Li ◽  
Qiaoyun Wang ◽  

Paeonia qiui is a wild species of tree peony native to China. Its leaves are purplish red from the bud germination to the flowering stage, and anthocyanin is the main pigment in purplish red leaves. However, the anthocyanin synthesis regulation mechanism in tree peony leaves remains unclear. In this study, an R2R3-MYB, PqMYB113 was identified from the leaves of P. qiui. Phylogenetic analysis revealed that PqMYB113 clustered with Liquidambar LfMYB113 and grape VvMYBA6. Subcellular location analysis showed that PqMYB113 was located in the cell nucleus. The transient reporter assay suggested that PqMYB113 was a transcriptional activator. The overexpression of PqMYB113 in Arabidopsis thaliana and tobacco (Nicotiana tabacum) resulted in increased anthocyanin accumulation and the upregulation of CHS, F3H, F3’H, DFR, and ANS. The dual luciferase reporter assay showed that PqMYB113 could activate the promoters of PqDFR and PqANS. Bimolecular fluorescence complementation assays and yeast two-hybrid assays suggested that PqMYB113 could form a ternary MBW complex with PqbHLH1 and PqWD40 cofactors. These results provide insight into the regulation of anthocyanin biosynthesis in tree peony leaves.

2022 ◽  
Jing Chen ◽  
Xuesong Zhao ◽  
Shanhong Ni ◽  
Yuanyuan Zhang ◽  
Xiuli Wu ◽  

This study investigated if artemisinin-chrysosplenetin combination (ART-CHR) improved ART antimalarial efficacy against resistant Plasmodium berghei K173 via depressing host ABC transporter and potential molecular mechanism. Parasitaemia% and inhibition% were calculated and gene/protein expressions of ABC transporters or PXR/CAR/NF-κB p52 were detected by Western-blot and RT-qPCR. In vitro transcription of PXR/CAR was studied by dual-luciferase reporter assay. Our data indicated that ART-CHR improved ART efficacy against resistant parasites. P-gp inhibitor verapamil and CHR showed a stronger effect in killing resistant parasites while vehicle and Bcrp inhibitor novobiocin did not. ART activated intestinal ABCB1/ABCG2 and CHR inhibited them. ART decreased Bcrp protein whereas CHR increased it. ART ascended ABCC1/ABCC4/ABCC5 mRNA but ART-CHR descended them. CHR as well as rifampin (RIF) or 5-fluorouracil (5-FU) increased transcription levels of PXR/CAR while showed a versatile regulation on in vivo hepatic and enternal PXR/CAR in Mdr1a+/+ (WT) or Mdr1a-/- (KO) mice infected with sensitive or resistant parasites. Oppositely, hepatic and enteric N-7κB p52 mRNA was conformably decreased in WT but increased in KO-resistant mice. NF-κB pathway should potentially involved in the mechanism of CHR on inhibiting ABC transporters and ART resistance while PXR/CAR play a more complicated role in this mechanism.

2022 ◽  
Vol 8 (1) ◽  
Dianbo Long ◽  
Yiyang Xu ◽  
Guping Mao ◽  
Ruobing Xin ◽  
Zengfa Deng ◽  

AbstracttRNA-derived fragments (tRFs) are new noncoding RNAs, and recent studies have shown that tRNAs and tRFs have important functions in cell metabolism via posttranscriptional regulation of gene expression. However, whether tRFs regulate cellular metabolism of the anterior cruciate ligament (ACL) remains elusive. The aim of this study was to investigate the role and action mechanism of tRFs in ACL cell metabolism. A tRF array was used to determine tRF expression profiles in different human ACL cells, and quantitative real-time polymerase chain reaction and fluorescence in situ hybridisation were used to determine TRF365 expression. ACL cells were transfected with a TRF365 mimic or a TRF365 inhibitor to determine whether TRF365 regulates IKBKB expression. A rescue experiment and dual-luciferase reporter assay were conducted to determine whether the 3′-untranslated region (UTR) of IKBKB has a TRF365-binding site. TRF365 was weakly expressed in osteoarthritis (OA) ACL and interleukin-1β-treated ACL cells. IKBKB was highly expressed in OA ACL and interleukin-1β-treated ACL cells; transfection with the TRF365 mimic suppressed IKBKB expression, whereas transfection with the TRF365 inhibitor had the opposite effect. A dual-luciferase reporter assay showed that TRF365 silenced the expression of IKBKB by binding to its 3′-UTR. Thus, TRF365 regulates the metabolism of ACL cells by targeting IKBKB. In summary, TRF365 may provide a new direction for the study of ACL degeneration and on the pathophysiological process of OA.

2022 ◽  
Vol 13 (1) ◽  
Hao Wu ◽  
Xiaodong Xie ◽  
Mingyang Sun ◽  
Min Chen ◽  
Xuan Tao ◽  

Abstract Background Mesenchymal stem cells (MSC) hold great promise for treating cardiovascular disease. Recently, we genetically modified MSCs with high mobility group box 1 (HMGB1), and these cells demonstrated high mobility by efficient migrating and homing to target neointima. The possible mechanism was investigated in the current study. Methods Rat MSCs were transfected with lentivirus containing HMGB1 cDNA to yield MSC-H cell line stably overexpressing HMGB1. The MSC-C cells which were transfected with empty lentivirus served as negative control, and the differentially expressed genes were analyzed by microarray. The cell mobility was determined by transwell migration assay. Intracellular free calcium and the expression of Cav3.2 T-type calcium channel (CACNA1H) were assayed to analyze activity of CACNA1H-mediated calcium influx. H2S production and γ-cystathionase expression were examined to assess the activity of γ-cystathionase/H2S signaling. The interaction of HMGB1 with γ-cystathionase in MSC-H cells was analyzed by co-immunoprecipitation. Luciferase reporter assay was performed to determine whether the promoter activity of γ-cystathionase was regulated by interaction of β-catenin and TCF/LEF binding site. Intercellular cAMP, PKA activity, phosphorylation of β-catenin, and GSK3β were investigated to reveal cAMP/PKA mediated β-catenin activation. Result Microarray analysis revealed that differentially expressed genes were enriched in cAMP signaling and calcium signaling. CACNA1H was upregulated to increase intracellular free calcium and MSC-H cell migration. Blockage of CACNA1H by ABT-639 significantly reduced intracellular free calcium and cell migration. The γ-cystathionase/H2S signaling was responsible for CACNA1H activation. H2S production was increased with high expression of γ-cystathionase in MSC-H cells, which was blocked by γ-cystathionase inhibitor DL-propargylglycine. Upregulation of γ-cystathionase was not attributed to interaction with HMGB1 overexpressed in MSC-H cells although γ-cystathionase was suggested to co-immunoprecipitate with oxidized HMGB1. Bioinformatics analysis identified a conserved TCF/LEF binding site in the promoter of γ-cystathionase gene. Luciferase reporter assay confirmed that the promoter had positive response to β-catenin which was activated in MSC-H cells. Finally, cAMP/PKA was activated to phosphorylate β-catenin at Ser657 and GSK3β, enabling persisting activation of Wnt/β-catenin signaling in MSC-H cells. Conclusion Our study revealed that modification of MSCs with HMGB1 promoted CACNA1H-mediated calcium influx via PKA/β-catenin/γ-cystathionase pathway. This was a plausible mechanism for high mobility of MSC-H cell line.

Xiaolei Gao ◽  
Xuan Zheng ◽  
Yixin Zhang ◽  
Liying Dong ◽  
Liangjie Sun ◽  

Background: p53 mutations are highly frequent in various human cancers and are reported to contribute to tumor malignance and chemoresistance. In this study, we explored the mechanism by which mutant p53 promotes carcinogenesis and chemoresistance and provided novel insights into cancer therapy.Materials and methods: A total of 409 patients with colorectal carcinoma from TCGA database were subdivided into two groups according to the p53 status, namely, mutant p53 and wild-type p53, following with GSEA analysis. The differences of the clinicopathologic index were also analyzed. Two HCT116 cell lines containing hot spots at codons R273H and R248W of p53 were constructed based on HCT116 with knockout p53, respectively. Cell viability, mobility, clonogenesis, and stemness were detected by CCK8, transwell migration and invasion, colonogenic, and sphere formation assays. Resistance to 5-FU was examined by live-dead staining and flow cytometry. qPCR, Western blot, and luciferase reporter assay were performed to identify that deficient or mutant p53 promoted chemoresistance of the colorectal carcinoma cell line HCT116 through the TCF21/CD44 signaling pathway, with the following rescue assays by overexpression of TCF21 and knockdown of CD44.Results: Patients with recurrence harbor a higher frequency of mutant p53 than those without recurrence (p &lt; 0.05). The mutant p53 group developed a larger tumor than the wild-type one. GSEA analysis showed that oncogenic signatures were enriched in the mutant p53 group. Extracellular assays showed that cancer cells with deficient or mutant p53 (R273H and R248W, respectively) promoted colon cancer cell growth, migration, invasion, and stemness. The mutant cancer cells were also observed to be significantly resistant to 5-FU. Xenografts also confirmed that HCT116 cells harboring deficient or mutant p53 promoted cancer growth and 5-FU tolerance. Luciferase reporter assay showed that deficient or mutant p53 R237H and R248W endowed cancer cells with chemoresistance by activating CD44 via repressing the nuclear transcription factor TCF21 expression. Overexpression of TCF21 or knockdown of CD44 could rescue the sensitivity to 5-FU in deficient and mutant p53 HCT116 cell lines.Conclusion: Our results, for the first time, reveal a novel deficient or mutant p53/TCF21/CD44 signaling pathway which promotes chemoresistance in colorectal carcinoma. The axis could be an effective therapeutic strategy against deficient- or mutant p53-driven chemoresistance.

2022 ◽  
Vol 24 (1) ◽  
Lingjiao Meng ◽  
Sheng Chang ◽  
Yang Sang ◽  
Pingan Ding ◽  
Liuxin Wang ◽  

Abstract Background A growing body of evidence indicates that abnormal expression of circular RNAs (circRNAs) plays a crucial role by acting as molecular sponges of microRNAs (miRNAs) in various diseases, including cancer. In this study, we explored whether circCCDC85A could function as a miR-550a-5p sponge and influence breast cancer progression. Methods We detected the expression of circCCDC85A in breast cancer tissues and cells using fluorescence in situ hybridization (FISH) and quantitative reverse transcription polymerase chain reaction (qRT-PCR). CCK-8 and colony formation assay were used to detect the proliferative ability of breast cancer cells. Wound healing assay and transwell migration and invasion assays were used to detect the migrative and invasive abilities of breast cancer cells. We also examined the interactions between circCCDC85A and miR-550a-5p using FISH, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assay. Moreover, we performed luciferase reporter assay, qRT-PCR, and Western blot to confirm the direct targeting of miR-550a-5p to MOB1A. Results The expression of circCCDC85A in breast cancer tissues was obviously lower than that in normal breast tissues. Over-expression of circCCDC85A substantially inhibited the proliferative, migrative, and invasive ability of breast cancer cells, while knocking down of circCCDC85A enhanced the aforementioned properties of breast cancer cells. Moreover, enforced expression of circCCDC85A inhibits the oncogenic activity of miR-550a-5p and increases the expression of MOB1A targeted by miR-550a-5p. Further molecular mechanism research showed that circCCDC85A may act as a molecular sponge for miR-550a-5p, thus restoring miR-550a-5p-mediated targeting repression of tumor suppressor MOB1A in breast cancer cells. Conclusion Our findings provide novel evidence that circCCDC85A inhibits the progression of breast cancer by functioning as a molecular sponge of miR-550a-5p to enhance MOB1A expression.

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Shufang Yan ◽  
Yang Chen ◽  
Meihong Yang ◽  
Qian Zhang ◽  
Jiajia Ma ◽  

MicroRNAs (miRNAs) participate in the comprehensive biological process of several cancer types. In our former study, we found that hsa-microRNA- (miR-)28-5p was downregulated, but tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activating protein zeta (14-3-3ζ or YWHAZ) was upregulated in diffuse large B-cell lymphoma (DLBCL) tissues. We predicted that YWHAZ was a target gene for hsa-miR- 28-5p using bioinformatics analysis. Our goal was to reveal the role of hsa-miR-28-5p in DLBCL. YWHAZ was tested by immunohistochemistry (IHC) in formalin-fixed paraffin-embedded (FFPE) tissues of 137 DLBCL tissues, and the expression of hsa-miR-28-5p and YWHAZ was examined by quantitative real-time polymerase chain reaction (qRT-PCR) in 15 fresh and frozen DLBCL tissues. To study the functional roles of the downregulated hsa-miR-28-5p in DLBCL, a Cell Counting Kit-8 assay was conducted to estimate cell proliferation. Transient transfection of miRNA mimics was performed to overexpress hsa-miR-28-5p, and flow cytometry was performed to examine cell apoptosis and cell cycle progression. A dual-luciferase reporter assay was employed to explore the relationship between hsa-miR-28-5p and YWHAZ. Western blotting and qRT-PCR were used to investigate the function of hsa-miR-28-5p in YWHAZ expression. hsa-miR-28-5p was found to be significantly downregulated in DLBCL tissues and cell lines. Functional studies showed that hsa-miR-28-5p overexpression inhibited cell viability and proliferation, and YWHAZ was predicted to be a target of hsa-miR-28-5p. Dual-luciferase reporter assay, Western blotting, and qRT-PCR verified that hsa-miR-28-5p negatively regulated YWHAZ expression by directly targeting its 3′ untranslated regions in DLBCL cells. hsa-miR-28-5p may suppress the growth of DLBCL cells by inhibiting YWHAZ expression. These findings could provide novel targets for DLBCL diagnosis and therapy.

Sign in / Sign up

Export Citation Format

Share Document