Treatment of ununited fracture of the hook of hamate by low-intensity pulsed ultrasound: A case report

2000 ◽  
Vol 25 (1) ◽  
pp. 77-79 ◽  
Author(s):  
Hiroyuki Fujioka ◽  
Masaya Tsunoda ◽  
Mitsuaki Noda ◽  
Nobuzo Matsui ◽  
Kosaku Mizuno
PM&R ◽  
2012 ◽  
Vol 4 ◽  
pp. S364-S364
Author(s):  
Myrlynn Delille ◽  
Junney M. Baeza Dager ◽  
Kresimir Banovac ◽  
Luis Batlle ◽  
Karin Zachow

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Koji Nozaka ◽  
Yoichi Shimada ◽  
Naohisa Miyakoshi ◽  
Shin Yamada ◽  
Michio Hongo ◽  
...  

2012 ◽  
Vol 61 (1) ◽  
pp. 41-44
Author(s):  
Tomohiro Isa ◽  
Hideki Asato ◽  
Mika Takaesu ◽  
Tomoyuki Ohshiro ◽  
Hisashi Serikyaku ◽  
...  

2021 ◽  
Vol 6 (11) ◽  
pp. 4073-4082
Author(s):  
Kunzhan Cai ◽  
Yilai Jiao ◽  
Quan Quan ◽  
Yulin Hao ◽  
Jie Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuya Shimizu ◽  
Naomasa Fujita ◽  
Kiyomi Tsuji-Tamura ◽  
Yoshimasa Kitagawa ◽  
Toshiaki Fujisawa ◽  
...  

AbstractUltrasound stimulation is a type of mechanical stress, and low-intensity pulsed ultrasound (LIPUS) devices have been used clinically to promote fracture healing. However, it remains unclear which skeletal cells, in particular osteocytes or osteoblasts, primarily respond to LIPUS stimulation and how they contribute to fracture healing. To examine this, we utilized medaka, whose bone lacks osteocytes, and zebrafish, whose bone has osteocytes, as in vivo models. Fracture healing was accelerated by ultrasound stimulation in zebrafish, but not in medaka. To examine the molecular events induced by LIPUS stimulation in osteocytes, we performed RNA sequencing of a murine osteocytic cell line exposed to LIPUS. 179 genes reacted to LIPUS stimulation, and functional cluster analysis identified among them several molecular signatures related to immunity, secretion, and transcription. Notably, most of the isolated transcription-related genes were also modulated by LIPUS in vivo in zebrafish. However, expression levels of early growth response protein 1 and 2 (Egr1, 2), JunB, forkhead box Q1 (FoxQ1), and nuclear factor of activated T cells c1 (NFATc1) were not altered by LIPUS in medaka, suggesting that these genes are key transcriptional regulators of LIPUS-dependent fracture healing via osteocytes. We therefore show that bone-embedded osteocytes are necessary for LIPUS-induced promotion of fracture healing via transcriptional control of target genes, which presumably activates neighboring cells involved in fracture healing processes.


Sign in / Sign up

Export Citation Format

Share Document