Perspective for Uranyl Photo-Redox Catalysis

Synlett ◽  
2021 ◽  
Author(s):  
Deqing Hu ◽  
Xuefeng Jiang

The application of the uranyl salts as the powerful photo-redox catalysts in chemical transformations is backward in comparison with their advances in thermo-catalysis and structural chemistry. In fact, the uranyl cations (UO22+) have been proven as ideal photo-redox catalysts in visible-light-driven chemical reactions. The excited state of uranyl cations (*UO22+), quenching by organic substrates via hydrogen atom transfer (HAT) or single electron transfer (SET), possesses a long-lived fluorescence lifetime up to microseconds and high oxidizing ability [Eo = +2.6 V vs standard hydrogen electrode (SHE)], which were excited with visible-light irradiation through ligand-to-metal charge transfer (LMCT). Interestingly, the ground state and excited state of uranyl cations (UO22+) are chemical inert toward oxygen molecules, preventing undesired transformations from active oxygen species. This review summarizes recent advances in photo-redox transformations enabled by uranyl salts.

2021 ◽  
Author(s):  
Ling Chen ◽  
Jing Hou ◽  
Ming Zheng ◽  
Le-Wu Zhan ◽  
Wan-Ying Tang ◽  
...  

A visible-light-driven direct carbonylative coupling of simple alkanes and alkenes via the combination of the hydrogen atom transfer process and photoredox catalysis has been demonstrated. Employing the N-alkoxyazinium salt as...


Science ◽  
2019 ◽  
Vol 366 (6463) ◽  
pp. 364-369 ◽  
Author(s):  
Nick Y. Shin ◽  
Jonathan M. Ryss ◽  
Xin Zhang ◽  
Scott J. Miller ◽  
Robert R. Knowles

Deracemization is an attractive strategy for asymmetric synthesis, but intrinsic energetic challenges have limited its development. Here, we report a deracemization method in which amine derivatives undergo spontaneous optical enrichment upon exposure to visible light in the presence of three distinct molecular catalysts. Initiated by an excited-state iridium chromophore, this reaction proceeds through a sequence of favorable electron, proton, and hydrogen-atom transfer steps that serve to break and reform a stereogenic C–H bond. The enantioselectivity in these reactions is jointly determined by two independent stereoselective steps that occur in sequence within the catalytic cycle, giving rise to a composite selectivity that is higher than that of either step individually. These reactions represent a distinct approach to creating out-of-equilibrium product distributions between substrate enantiomers using excited-state redox events.


2020 ◽  
Author(s):  
Noah Bissonnette ◽  
Keun Ah Ryu ◽  
Tamara Reyes-Robles ◽  
Sharon Wilhelm ◽  
Erik Hett ◽  
...  

<p>Despite the growing utilization of visible light photochemistry in both chemistry and biology, a general low-heat photoreactor for use across these different disciplines does not exist. Herein, we describe the design and utilization of a standardized photoreactor for visible light driven activation and photocatalytic chemical transformations. Using this single benchtop photoreactor, we perform photoredox reactions across multiple visible light wavelengths, a high throughput photocatalytic cross coupling reaction, and <i>in vitro</i> labeling of proteins and live cells. Given the success of this reactor in all tested applications, we envision that this multi-use photoreactor will be widely used in biology, chemical biology, and medicinal chemistry settings.</p>


Author(s):  
Nick Shin ◽  
Jonathan Ryss ◽  
Xin Zhang ◽  
Scott Miller ◽  
Robert Knowles

A new strategy for catalytic deracemization is presented, wherein amine derivatives undergo spontaneous optical enrichment upon exposure to visible light in the presence of three distinct molecular catalysts. Initiated by an excited-state iridium chromophore, this reaction proceeds <i>via </i>a sequence of favorable electron, proton, and hydrogen atom transfer steps that serve to break and reform a stereogenic C–H bond. The enantioselectivity in these reactions is jointly determined by two independent stereoselective steps that occur in sequence within the catalytic cycle, giving rise to a composite selectivity that is higher than that of either step individually. These reactions represent a distinct and potentially general approach to creating out-of-equilibrium product distributions between substrate enantiomers using excited-state redox events.


2018 ◽  
Vol MA2018-01 (31) ◽  
pp. 1852-1852
Author(s):  
Hiroshi Imahori

Exporing renewable energy sources is an important task in making our society sustainable. In this regard, use of sunlight as an infinite energy source is fascinating. Specifically, realizing artificial photosynthesis, i.e., integration of light-harvesting, multi-step electron and proton transfer, and water oxidation for the efficient production of solar fuels, is a great challenge in chemistry. For the purpose, dye-sensitized photoelectrosynthesis cells (DSPSC) have been investigated, as the heterogeneous water splitting on inorganic semiconductors is promising for the upcoming large scale device operation. In DSPSC a molecular sensitizer adsorbed on a semiconducting electrode harvests visible light and injects an electron from the excited-state of the sensitizer (S*) to a conduction band (CB) of the electrode. Then, the sensitizer radical cation (S• +) extracts an electron from a water oxidation catalyst (WOC) to regenerate the sensitizer and one-electron oxidized WOC. After reiterating the cycle, high oxidation states of the WOC are produced, eventually transforming two water molecules into four protons and one oxygen molecule. As the sensitizer bis(2,2’-bipyridine)(4,4’-diphosphonato-2,2’-bipyridine)ruthenium(II) (RuP) has been frequently employed for the construction of molecule-based artificial photosynthetic systems, owing to its sufficient first oxidation potential for water oxidation and a long lifetime of its excited state for electron injection. However, the light-harvesting ability of RuP is rather low in visible region beyond 500 nm. Considering that yellow to red photons mainly shower down on the earth from sun, use of photons in visible region is essential for efficient chemical conversion by sunlight. In this context, porphyrins are attractive as the sensitizer due to their excellent light-harvesting in visible region and facile tuning of their excited-states and redox properties by their chemical functionalization. Nevertheless, molecule-based artificial photosynthetic systems with porphyrins as the sensitizer have been very limited as the result of their poor performance. One plausible reason is the occurrence of fast charge recombination (CR) between the electron injected into the CB of TiO2 (denoted as TiO2(e−)) and S• +. CR from TiO2(e−) to the oxidized WOC would also take place within a few microsecond. Undesirable CR from TiO2(e−) to water is indicated. Thus, to overcome the disadvantages, it is crucial to optimize the electron transfer (ET) processes at the interfaces. In this talk, I will give an overview of our recent initiatives on visible light-driven water oxidation with novel porphyrin sensitizers and water oxidation catalysts. [1] M. Yamamoto, L. Wang, F. Li, T. Fukushima, K. Tanaka, L. Sun and H. Imahori, Chem. Sci., 7, 1430-1439 (2016). [2] M. Yamamoto, Y. Nishizawa, P. Chábera, F. Li, T. Pascher, V. Sundström, L. Sun, and H. Imahori, Chem. Commun., 52, 13702-13705 (2016). [3] M. Yamamoto, J. Föhlinger, J. Petersson, L. Hammarström, and H. Imahori, Angew. Chem. Int. Ed., 56, 3329-3333 (2017).


ChemSusChem ◽  
2015 ◽  
Vol 8 (18) ◽  
pp. 3048-3051 ◽  
Author(s):  
Ludovic Schneider ◽  
Yasmina Mekmouche ◽  
Pierre Rousselot-Pailley ◽  
A. Jalila Simaan ◽  
Viviane Robert ◽  
...  

2019 ◽  
Vol 55 (39) ◽  
pp. 5595-5598 ◽  
Author(s):  
Florian Loose ◽  
Dian Wang ◽  
Lei Tian ◽  
Gregory D. Scholes ◽  
Robert R. Knowles ◽  
...  

Concepts for the thermodynamically challenging synthesis of weak N–H bonds by photoinduced proton coupled electron transfer are explored. By harvesting visible light as driving force, ammonia synthesis was achieved and mechanistically elucidated.


Sign in / Sign up

Export Citation Format

Share Document