2021 ◽  
Vol 10 (9) ◽  
pp. 1850
Author(s):  
Seun-Ah Lee ◽  
Sang-Won Jo ◽  
Suk-Ki Chang ◽  
Ki-Han Kwon

This study aims to investigate the diagnostic ability of the contrast-enhanced 3D T1 black-blood fast spin-echo (T1 BB-FSE) sequence compared with the contrast-enhanced 3D T1-spoiled gradient-echo (CE-GRE) sequence in patients with facial neuritis. Forty-five patients with facial neuritis who underwent temporal bone MR imaging, including T1 BB-FSE and CE-GRE imaging, were examined. Two reviewers independently assessed the T1 BB-FSE and CE-GRE images in terms of diagnostic performance, and qualitative (diagnostic confidence and visual asymmetric enhancement) and quantitative analysis (contrast-enhancing lesion extent of the canalicular segment of the affected facial nerve (LEC) and the affected side-to-normal signal intensity ratio (rSI)). The AUCs of each reviewer, and the sensitivity and accuracy of T1 BB-FSE were significantly superior to those of CE-GRE (p < 0.05). Regarding diagnostic confidence and visual asymmetric enhancement, T1 BB-FSE tended to be rated greater than CE-GRE (p < 0.05). Additionally, in quantitative analysis, LEC and rSI of the canalicular segment on T1 BB-FSE were larger than those on CE-GRE (p < 0.05). The T1 BB-FSE sequence was significantly superior to the CE-GRE sequence, with more conspicuous lesion visualization in terms of both qualitative and quantitative aspects in patients with facial neuritis.


1997 ◽  
Vol 7 (7) ◽  
pp. 1048-1053 ◽  
Author(s):  
P. Soyer ◽  
Y. Rondeau ◽  
A.-C. Dufresne ◽  
L. Spelle ◽  
E. Somveille ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Gasser Hathout ◽  
Neema Jamshidi

Rationale and Objectives. Accurate signal to tracer concentration maps are critical to quantitative MRI. The purpose of this study was to evaluate and optimize spoiled gradient echo (SPGR) MR sequences for the use of gadolinium (Gd-DTPA) as a kinetic tracer.Methods. Water-gadolinium phantoms were constructed for a physiologic range of gadolinium concentrations. Observed and calculated SPGR signal to concentration curves were generated. Using a percentage error determination, optimal pulse parameters for signal to concentration mapping were obtained.Results. The accuracy of the SPGR equation is a function of the chosen MR pulse parameters, particularly the time to repetition (TR) and the flip angle (FA). At all experimental values of TR, increasing FA decreases the ratio between observed and calculated signals. Conversely, for a constant FA, increasing TR increases this ratio. Using optimized pulse parameter sets, it is possible to achieve excellent accuracy (approximately 5%) over a physiologic range of concentration tracer concentrations.Conclusion. Optimal pulse parameter sets exist and their use is essential for deriving accurate signal to concentration curves in quantitative MRI.


Sign in / Sign up

Export Citation Format

Share Document