knee cartilage
Recently Published Documents


TOTAL DOCUMENTS

793
(FIVE YEARS 211)

H-INDEX

57
(FIVE YEARS 7)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Ping Zhang ◽  
Ran Xu Zhang ◽  
Xiao Shuai Chen ◽  
Xiao Yue Zhou ◽  
Esther Raithel ◽  
...  

Abstract Background The cartilage segmentation algorithms make it possible to accurately evaluate the morphology and degeneration of cartilage. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage degeneration) that may influence the accuracy of segmentation. It is valuable to evaluate and compare the accuracy and clinical value of volume and mean T2* values generated directly from automatic knee cartilage segmentation with those from manually corrected results using prototype software. Method Thirty-two volunteers were recruited, all of whom underwent right knee magnetic resonance imaging examinations. Morphological images were obtained using a three-dimensional (3D) high-resolution Double-Echo in Steady-State (DESS) sequence, and biochemical images were obtained using a two-dimensional T2* mapping sequence. Cartilage score criteria ranged from 0 to 2 and were obtained using the Whole-Organ Magnetic Resonance Imaging Score (WORMS). The femoral, patellar, and tibial cartilages were automatically segmented and divided into subregions using the post-processing prototype software. Afterwards, all the subregions were carefully checked and manual corrections were done where needed. The dice coefficient correlations for each subregion by the automatic segmentation were calculated. Results Cartilage volume after applying the manual correction was significantly lower than automatic segmentation (P < 0.05). The percentages of the cartilage volume change for each subregion after manual correction were all smaller than 5%. In all the subregions, the mean T2* relaxation time within manual corrected subregions was significantly lower than in regions after automatic segmentation (P < 0.05). The average time for the automatic segmentation of the whole knee was around 6 min, while the average time for manual correction of the whole knee was around 27 min. Conclusions Automatic segmentation of cartilage volume has a high dice coefficient correlation and it can provide accurate quantitative information about cartilage efficiently without individual bias. Advances in knowledge: Magnetic resonance imaging is the most promising method to detect structural changes in cartilage tissue. Unfortunately, due to the structure and morphology of the cartilages obtaining accurate segmentations can be problematic. There are some factors (location of cartilage subregions, hydrarthrosis and cartilage degeneration) that may influence segmentation accuracy. We therefore assessed the factors that influence segmentations error.


Cartilage ◽  
2021 ◽  
pp. 194760352110638
Author(s):  
Robert J. Pettit ◽  
Joshua S. Everhart ◽  
Alex C. DiBartola ◽  
Ryan E. Blackwell ◽  
David C. Flanigan

Objective The objective of this study was to assess potential risk factors, including time delay until implantation, for knee cartilage defect expansion or new high-grade defect formation between biopsy and Autologous Chondrocyte Implantation (ACI) or Matrix Autologous Chondrocyte Implantation (MACI). Study design Consecutive knee ACI and MACI cases by a single surgeon ( n = 111) were reviewed. The relationship between time between biopsy and staged implantation and (1) progression in primary cartilage defect size and (2) development of a new high-grade (Outerbridge grade ≥3) cartilage defect were determined with adjustment for demographics, body mass index, smoking status, coronal alignment, initial cartilage status, and prior surgery. Results Average size of the primary defect at time of biopsy was 4.50 cm2. Mean time to chondrocyte implantation was 155 days. Defect expansion increased 0.11 cm2 (standard error = 0.03) per month delay to implantation ( P = 0.001). Independent predictors of defect expansion were male sex, smaller initial defect size, and delay to implantation (adjusted mean = 0.15 cm2 expansion per month). A total of 16.2% of patients ( n = 18/111) developed a new high-grade defect. Independent predictors of a new secondary defect were Outerbridge grade 2 changes (vs. 0-1) on the surface opposing the index defect and delayed implantation (per month increase, adjusted odds ratio = 1.21, 95% confidence interval: 1.01-1.44; P = 0.036). Conclusions Patients undergoing 2-stage cell-based cartilage restoration with either ACI or MACI demonstrated long delays between stages of surgery, placing them at risk for expanding defects and development of new high-grade cartilage defects. Patients who were male, had smaller initial defect size, and longer time between surgeries were at greater risk for defect expansion. Level of Evidence III, retrospective comparative study.


Author(s):  
İsmail Safa SATOĞLU ◽  
Meric UNAL ◽  
İbrahim ÇOBAN ◽  
Duygu GÜREL ◽  
Alper GÜLTEKİN ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xuchang Zhou ◽  
Hong Cao ◽  
Miao Wang ◽  
Jun Zou ◽  
Wei Wu

Abstract Background The purpose of this study was to explore whether moderate-intensity exercise can alleviate motion-induced post-traumatic osteoarthritis (PTOA) and the expression change of lncRNA H19 during this progression. Methods Twenty-week-old male C57BL/6 mice were randomly divided into five groups: model control group (MC group, n = 6), treadmill model group (M group, n = 6), rehabilitation control group (RC group, n = 6), treadmill model + rehabilitation training group (M + R group, n = 6) and treadmill model + convalescent group (M + C group, n = 6). Paraffin sections were used to observe the pathological changes in the mouse knee joint in each group. A micro-CT was used to scan the knee joint to obtain the morphological indexes of the tibial plateau bone. Real-time PCR was used to detect the mRNA levels of inflammatory factors, synthetic and catabolic factors in cartilage. Results After high-intensity exercise for 4 weeks, the inflammation and catabolism of the mouse knee cartilage were enhanced, and the anabolism was weakened. Further study showed that these results were partially reversed after 4-week moderate-intensity training. The results of hematoxylin–eosin staining confirmed this finding. Meanwhile, high-intensity exercise reduced the expression of lncRNA H19 in cartilage, while the expression of lncRNA H19 increased after 4 weeks of moderate-intensity exercise. Conclusion High-intensity treadmill running can cause injury to the knee cartilage in C57BL/6 mice which leads to PTOA and a decrease of lncRNA H19 expression in cartilage. Moderate-intensity exercise can relieve PTOA and partially reverse lncRNA H19 expression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaopeng Song ◽  
Tianwen Ma ◽  
Hailong Hu ◽  
Mingchao Zhao ◽  
Hui Bai ◽  
...  

With the gradual deepening of understanding of systemic health and quality of life, the factors affecting osteoarthritis (OA) are not limited to mechanical injury, metabolic abnormality, age and obesity, etc., but circadian rhythm, which plays a non-negligible role in human daily life. The purpose of this study was to explore the molecular mechanism of chronic circadian rhythm disturbance (CRD) inducing cartilage OA-like degeneration. Rats with the anterior cruciate ligament excision transection (ACLT) were used to establish the early-stage OA model (6-week). The light/dark (LD) cycle shifted 12 h per week for 22 weeks in order to establish a chronic CRD model. BMAL1 knockdown (KD) and Wnt/β-catenin pathway inhibition were performed in chondrocytes. The contents of proinflammatory factors and OA biomarkers in serum and chondrocyte secretions were detected by ELISA. Pathological and immunohistochemical staining of articular cartilage indicated the deterioration of cartilage. WB and qPCR were used to evaluate the relationship between matrix degradation and the activation of Wnt/β-catenin signaling pathway in chondrocytes. We found that chronic CRD could cause OA-like pathological changes in knee cartilage of rats, accelerating cartilage matrix degradation and synovial inflammation. The expression of MMP-3, MMP-13, ADAMTS-4, and β-catenin increased significantly; BMAL1, Aggrecan, and COL2A1 decreased significantly in either LD-shifted cartilage or BMAL1-KD chondrocytes. The expression of β-catenin and p-GSK-3β elevated, while p-β-catenin and GSK-3β diminished. The inhibitor XAV-939 was able to mitigated the increased inflammation produced by transfected siBMAL1. Our study demonstrates that chronic CRD disrupts the balance of matrix synthesis and catabolic metabolism in cartilage and chondrocytes, and it is related to the activation of the canonical Wnt/β-catenin signaling pathway.


2021 ◽  
Author(s):  
Youwei LI ◽  
Qiang Gao ◽  
Jingxin Liu ◽  
Qiping Wen ◽  
Shiqi Jia ◽  
...  

Abstract -BACKGROUND: Genu recurvatum in stroke patient hemiplegia causes readily cumulative damage and degenerative changes of knee cartilage. It is important to detect early lesions of cartilage for appropriate treatment and rehabilitation.-PURPOSE: The purpose is to provide theoretical basis for early rehabilitation of hemiplegia patients. -STUDY TYPE: Cross-sectional study. -POPULATION: 39 Stroke patients with genu recurvatum and 9 healthy volunteers. -SEQUENCE: We used zero TE double echo imaging sequence. -ASSESSMENT: Analyze the water content in knee joint cartilage at 12 different sites of stroke patients with genu recurvatum using a method similar to porosity index. -STATISTICAL TESTS: Statistical analysis was performed using SPSS 17.0 statistical software. The mean ± standard deviation was used to represent the mean. The independent sample t test was used for all mean comparisons. When the data did not conform to the normal distribution or variance heterogeneity, the non-parametric test was used. P< 0.05 was considered statistically significant.-RESULTS: When compared hemiplegia limb vs. non-hemiplegia limb in patients, the ratio of deep/shallow free water content of the cartilages at the junction of the femur and anterior horn (1.16 vs. 1.06) and posterior horn (1.13 vs. 1.25) of lateral meniscus were significant differences (P<0.05). -DATA CONCLUSION: Conclusion is that Genu recurvatum in stroke patients with hemiplegia can cause changes in moisture content of knee cartilage, and the changes of knee cartilage are more obvious with the increase of genu recurvatum. The so-called "healthy limb" is no longer the real meaning of healthy limb, and should be considered simultaneously with the affected limb in the development of rehabilitation treatment plan.


2021 ◽  
Vol 40 (4) ◽  
pp. 677-692
Author(s):  
Karen Y. Cheng ◽  
Alecio F. Lombardi ◽  
Eric Y. Chang ◽  
Christine B. Chung

Sign in / Sign up

Export Citation Format

Share Document