Generation of Clara cells from murine pluripotent stem cells – a new tool to explore airway epithelial regeneration

Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
K Katsirntaki ◽  
C Mauritz ◽  
S Schmeckebier ◽  
M Sgodda ◽  
V Puppe ◽  
...  
Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
S Ulrich ◽  
S Weinreich ◽  
R Haller ◽  
S Menke ◽  
R Olmer ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Satoshi Konishi ◽  
Shimpei Gotoh ◽  
Kazuhiro Tateishi ◽  
Yuki Yamamoto ◽  
Yohei Korogi ◽  
...  

Author(s):  
Ruobing Wang ◽  
Adam J. Hume ◽  
Mary Lou Beermann ◽  
Chantelle Simone-Roach ◽  
Jonathan Lindstrom-Vautrin ◽  
...  

There is an urgent need to understand how SARS-CoV-2 infects the airway epithelium and in a subset of individuals leads to severe illness or death. Induced pluripotent stem cells (iPSCs) provide a near limitless supply of human cells that can be differentiated into cell types of interest, including airway epithelium, for disease modeling. We present a human iPSC-derived airway epithelial platform, composed of the major airway epithelial cell types, that is permissive to SARS-CoV-2 infection. Subsets of iPSC-airway cells express the SARS-CoV-2 entry factors ACE2 and TMPRSS2. Multiciliated cells are the primary initial target of SARS-CoV-2 infection. Upon infection with SARS-CoV-2, iPSC-airway cells generate robust interferon and inflammatory responses and treatment with remdesivir or camostat methylate causes a decrease in viral propagation and entry, respectively. In conclusion, iPSC-derived airway cells provide a physiologically relevant in vitro model system to interrogate the pathogenesis of, and develop treatment strategies for, COVID-19 pneumonia.


Author(s):  
Finn J. Hawkins ◽  
Shingo Suzuki ◽  
Mary Lou Beermann ◽  
Cristina Barillà ◽  
Ruobing Wang ◽  
...  

SummaryThe derivation of self-renewing tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would shorten the time needed to engineer mature cell types in vitro and would have broad reaching implications for the field of regenerative medicine. Here we report the directed differentiation of human iPSCs into putative airway basal cells (“iBCs”), a population resembling the epithelial stem cell of lung airways. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato) we track and purify these cells over time, as they first emerge from iPSC-derived foregut endoderm as developmentally immature NKX2-1GFP+ lung progenitors which then augment a TP63 program during subsequent proximal airway epithelial patterning. These cells clonally proliferate, initially as NKX2-1GFP+/TP63tdTomato+ immature airway progenitors that lack expression of the adult basal cell surface marker NGFR. However, in response to primary basal cell medium, NKX2-1GFP+/ TP63tdTomato+ cells upregulate NGFR and display the molecular and functional phenotype of airway basal stem cells, including the capacity to clonally self-renew or undergo multilineage ciliated and secretory epithelial differentiation in air-liquid interface cultures. iBCs and their differentiated progeny recapitulate several fundamental physiologic features of normal primary airway epithelial cells and model perturbations that characterize acquired and genetic airway diseases. In an asthma model of mucus metaplasia, the inflammatory cytokine IL-13 induced an increase in MUC5AC+ cells similar to primary cells. CFTR-dependent chloride flux in airway epithelium generated from cystic fibrosis iBCs or their syngeneic CFTR-corrected controls exhibited a pattern consistent with the flux measured in primary diseased and normal human airway epithelium, respectively. Finally, multiciliated cells generated from an individual with primary ciliary dyskinesia recapitulated the ciliary beat and ultrastructural defects observed in the donor. Thus, we demonstrate the successful de novo generation of a tissue-resident stem cell-like population in vitro from iPSCs, an approach which should facilitate disease modeling and future regenerative therapies for a variety of diseases affecting the lung airways.


2021 ◽  
Author(s):  
Ruobing Wang ◽  
Adam Hume ◽  
Mary Lou Beermann ◽  
Chantelle Simone-Roach ◽  
Jonathan Lindstrom-Vautrin ◽  
...  

There is an urgent need to understand how SARS-CoV-2 infects the airway epithelium and in a subset of individuals leads to severe illness or death. Induced pluripotent stem cells (iPSCs) provide a near limitless supply of human cells that can be differentiated into cell types of interest, including airway epithelium, for disease modeling. We present a human iPSC-derived airway epithelial platform, composed of the major airway epithelial cell types, that is permissive to SARS-CoV-2 infection. Subsets of iPSC-airway cells express the SARS-CoV-2 entry factors ACE2 and TMPRSS2. Multiciliated cells are the primary initial target of SARS-CoV-2 infection. Upon infection with SARS-CoV-2, iPSC-airway cells generate robust interferon and inflammatory responses and treatment with remdesivir or camostat methylate causes a decrease in viral propagation and entry, respectively. In conclusion, iPSC-derived airway cells provide a physiologically relevant in vitro model system to interrogate the pathogenesis of, and develop treatment strategies for, COVID-19 pneumonia.


2013 ◽  
Vol 32 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Sarah X L Huang ◽  
Mohammad Naimul Islam ◽  
John O'Neill ◽  
Zheng Hu ◽  
Yong-Guang Yang ◽  
...  

2020 ◽  
Vol 21 (21) ◽  
pp. 7834
Author(s):  
Kasem Theerakittayakorn ◽  
Hong Thi Nguyen ◽  
Jidapa Musika ◽  
Hataiwan Kunkanjanawan ◽  
Sumeth Imsoonthornruksa ◽  
...  

Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration. However, some physiological aspects of animal stem cells are different from those of human stem cells, the protocols suited for animal stem cells might not be suitable for human stem cells. Therefore, in this review, only the investigations of corneal epithelial differentiation of human stem cells are taken into account. The available protocols for inducing the differentiation of human stem cells into corneal epithelial cells are gathered and compared. Also, the pathways involving in the differentiation are provided to elucidate the relevant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document