scholarly journals Mandibular Reconstruction Using ProPlan CMF: A Review

2017 ◽  
Vol 1 (1) ◽  
pp. s-0037-1606835 ◽  
Author(s):  
Ryo Sasaki ◽  
Michael Rasse

ProPlan CMF (Depuy Synthes, Solothurn, Switzerland, and Materialise, Leuven, Belgium) is a computer-aided surgical virtual planning service using an online meeting with professional medical engineers and transfers patient-specific surgical guide to the virtual plan. Moreover, prebent reconstruction plates or patient-specific computer-aided manufacturing-fabricated reconstruction can also be used. This service started in 2011. Currently, it is widely used in Europe. Current status of mandibular reconstruction with ProPlan CMF vertical planning service with the surgical guide was reviewed. The accuracy was excellent in terms of contact of the osteotomized parts and the contact to the remaining skeleton. The authors found that currently, a small number of reports regarding the mandibular reconstruction with virtual planning service and surgical guides are available. These reports also have a small number of cases and short-term follow-up results. In this situation, this review revealed that (1) mainly the resection guides, cutting guides, and patient-specific mandible reconstruction plates were adequately well fitted to the surgical site intraoperatively, (2) the ischemic time might be more reduced than that of the conventional surgery (3) the accuracy of computer-assisted surgery in the mandibular reconstruction was clinically acceptable, and (4) condyle positions after the computer-assisted surgery was mainly normal. The higher additional cost than that of the conventional technique is presently an issue. Large-scale clinical studies and long-term follow-up studies are demanded.

2017 ◽  
Vol 54 (4) ◽  
pp. 457-464 ◽  
Author(s):  
Paolo Scolozzi ◽  
Georges Herzog

We are reporting the treatment of severe maxillary hypoplasia in two patients with unilateral cleft lip and palate by using a specific approach combining the Le Fort I distraction osteogenesis technique coupled with computer-aided design/computer-aided manufacturing customized surgical guides and internal distractors based on virtual computational planning. This technology allows for the transfer of the virtual planned reconstruction to the operating room by using custom patient-specific implants, surgical splints, surgical cutting guides, and surgical guides to plate or distractor adaptation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Henriette L. Möllmann ◽  
Laura Apeltrath ◽  
Nadia Karnatz ◽  
Max Wilkat ◽  
Erik Riedel ◽  
...  

ObjectivesThis retrospective study compared two mandibular reconstruction procedures—conventional reconstruction plates (CR) and patient-specific implants (PSI)—and evaluated their accuracy of reconstruction and clinical outcome.MethodsOverall, 94 patients had undergone mandibular reconstruction with CR (n = 48) and PSI (n = 46). Six detectable and replicable anatomical reference points, identified via computer tomography, were used for defining the mandibular dimensions. The accuracy of reconstruction was assessed using pre- and postoperative differences.ResultsIn the CR group, the largest difference was at the lateral point of the condyle mandibulae (D2) -1.56 mm (SD = 3.8). In the PSI group, the largest difference between preoperative and postoperative measurement was shown at the processus coronoid (D5) with +1.86 mm (SD = 6.0). Significant differences within the groups in pre- and postoperative measurements were identified at the gonion (D6) [t(56) = -2.217; p = .031 <.05]. In the CR group, the difference was 1.5 (SD = 3.9) and in the PSI group -1.04 (SD = 4.9). CR did not demonstrate a higher risk of plate fractures and post-operative complications compared to PSI.ConclusionFor reconstructing mandibular defects, CR and PSI are eligible. In each case, the advantages and disadvantages of these approaches must be assessed. The functional and esthetic outcome of mandibular reconstruction significantly improves with the experience of the surgeon in conducting microvascular grafts and familiarity with computer-assisted surgery. Interoperator variability can be reduced, and training of younger surgeons involved in planning can be reaching better outcomes in the future.


2014 ◽  
Vol 7 (2) ◽  
pp. 158-166 ◽  
Author(s):  
Frank Wilde ◽  
Carl-Peter Cornelius ◽  
Alexander Schramm

We investigated the workflow of computer-assisted mandibular reconstruction that was performed with a patient-specific mandibular reconstruction plate fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) techniques and a fibula flap. We assessed the feasibility of this technique from virtual planning to the completion of surgery. Computed tomography (CT) scans of a cadaveric skull and fibula were obtained for the virtual simulation of mandibular resection and reconstruction using ProPlan CMF software (Materialise®/DePuy Synthes®). The virtual model of the reconstructed mandible provided the basis for the computer-aided design of a patient-specific reconstruction plate that was milled from titanium using a five-axis milling machine and CAM techniques. CAD/CAM techniques were used for producing resection guides for mandibular resection and cutting guides for harvesting a fibula flap. Mandibular reconstruction was simulated in a cadaveric wet laboratory. No problems were encountered during the procedure. The plate was fixed accurately to the residual bone without difficulty. The fibula segments were attached to the plate rapidly and reliably. The fusion of preoperative and postoperative CT datasets demonstrated high reconstruction precision. Computer-assisted mandibular reconstruction with CAD/CAM-fabricated patient-specific reconstruction plates appears to be a promising approach for mandibular reconstruction. Clinical trials are required to determine whether these promising results can be translated into successful practice and what further developments are needed.


2010 ◽  
Vol 36 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Daniele De Santis ◽  
Luciano Claudio Canton ◽  
Alessandro Cucchi ◽  
Guglielmo Zanotti ◽  
Enrico Pistoia ◽  
...  

Abstract Computer-assisted surgery is based on computerized tomography (CT) scan technology to plan the placement of dental implants and a computer-aided design/computer-aided manufacturing (CAD-CAM) technology to create a custom surgical template. It provides guidance for insertion implants after analysis of existing alveolar bone and planning of implant position, which can be immediately loaded, therefore achieving esthetic and functional results in a surgical stage. The absence of guidelines to treat dentulous areas is often due to a lack of computer-assisted surgery. The authors have attempted to use this surgical methodology to replace residual teeth with an immediate implantoprosthetic restoration. The aim of this case report is to show the possibility of treating a dentulous patient by applying a computer-assisted surgical protocol associated with the use of a double surgical template: one before extraction and a second one after extraction of selected teeth.


Author(s):  
Niclas Hagen ◽  
Reinald Kühle ◽  
Frederic Weichel ◽  
Urs Eisenmann ◽  
Petra Knaup-Gregori ◽  
...  

The integration of surgical knowledge into virtual planning systems plays a key role in computer-assisted surgery. The knowledge is often implicitly contained in the implemented algorithms. However, a strict separation would be desirable for reasons of maintainability, reusability and readability. Along with the Department of Oral and Maxillofacial Surgery at Heidelberg University Hospital, we are working on the development of a virtual planning system for mandibular reconstruction. In this work we describe a process for the structured acquisition and representation of surgical knowledge for mandibular reconstruction. Based on the acquired knowledge, an RDF(S) ontology was created. The ontology is connected to the virtual planning system via a SPARQL interface. The described process of knowledge acquisition can be transferred to other surgical use cases. Furthermore, the developed ontology is characterised by a reusable and easily expandable data model.


Author(s):  
Michelle Carvalho de Sales ◽  
Rafael Maluza Flores ◽  
Julianny da Silva Guimaraes ◽  
Gustavo Vargas da Silva Salomao ◽  
Tamara Kerber Tedesco ◽  
...  

Dental surgeons need in-depth knowledge of the bone tissue status and gingival morphology of atrophic maxillae. The aim of this study is to describe preoperative virtual planning of placement of five implants and to compare the plan with the actual surgical results. Three-dimensional planning of rehabilitation using software programs enables surgical guides to be specially designed for the implant site and manufactured using 3D printing. A patient with five teeth missing was selected for this study. The patient’s maxillary region was scanned with CBCT and a cast model was produced. After virtual planning using ImplantViewer, five implants were placed using a printed surgical guide. Two weeks after the surgical procedure, the patient underwent another CBCT scan of the maxilla. Statistically significant differences were detected between the virtually planned positions and the actual positions of the implants, with a mean deviation of 0.36 mm in the cervical region and 0.7 mm in the apical region. The surgical technique used enables more accurate procedures when compared to the conventional technique. Implants can be better positioned, with a high level of predictability, reducing both operating time and patient discomfort.


Sign in / Sign up

Export Citation Format

Share Document