Synthesis of Chlorinated Arenes and Hetarenes by One-Pot Cyclizations of 1,3-Bis-silyl Enol Ethers

Synlett ◽  
2019 ◽  
Vol 30 (06) ◽  
pp. 665-673 ◽  
Author(s):  
Peter Langer ◽  
Zahid Hassan

This account describes our recent findings and progress in synthesizing chlorinated arenes and hetarenes by one-pot cyclizations of 1,3-bis-silyl enol ether derivatives. These reactions allow for the preparation of highly functionalized products with a high level of regioselectivity. The synthetic routes are cost-effective avoiding additional functionalization steps. The products are difficult to be accessed by other methods. The chlorine atom is of relevance in medicinal and agriculture chemistry. In addition, it allows further functionalizations by transition-metal-catalyzed cross-coupling reactions.1 Introduction2 Cyclizations of 2-Chloro-1,3-bis(silyloxy)-1,3-butadienes2.1 3,5-Dihydroxychlorophthalates2.2 2,4-Dihydroxy-homochlorophthalates2.3 2-(Arylsulfonyl)chloropyridines2.4 1-Azaxanthones3 Cyclizations of 4-Chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienes3.1 3-Chlorosalicylates3.2 Functionalized Chlorobiaryls3.3 3-Chloro-5-(2-chloroethyl)-salicylates3.4 2,4-Dihydroxychlorobenzophenones4 Cyclizations of 2-Chloro-3-(silyloxy)-2-en-1-ones4.1 Functionalized Chlorophenols4.2 Functionalized Chlorinated Biaryls and Chlorofluorenones4.3 Functionalized Chlorochromenones4.4 Functionalized 3-(Methylthio)chlorophenols4.5 Functionalized 3-Chloromethylphenols5 Conclusions6 List of Abbreviations

Synlett ◽  
2021 ◽  
Author(s):  
Xuefeng Cong ◽  
Xiaoming Zeng

Transition-metal-catalyzed cross-coupling has appeared as one of powerful and useful tools in the formation of C–C and C–heteroatom bonds. Given that the resource of precious metals on earth is shortage, the use of earth-abundant metals as catalysts in developing cost-effective strategies of cross-coupling is one of trends to synthetic chemistry. Compared with the achievements using first-row metal catalysis of nickel, iron, cobalt, and even manganese, the group 6 metal chromium has rarely been used in promoting cross-coupling. This perspective will cover recent advances in Cr-catalyzed cross-coupling reactions by the transformations of chemically inert C(aryl)–O, C(aryl)–N and C(aryl)–H bonds, offering selective strategies for molecule construction. The ability of low-valent Cr with a high-spin state involving in the process of two-electron oxidative addition will be highlighted, which is different with the mechanism by single-electron-transfer that is traditionally proposed in chromium-mediated transformations. 1 Introduction 2 Cr-Catalyzed Kumada Coupling of Unactivated C(aryl)−O and C(aryl)−N Bonds 3 Cr-Catalyzed Reductive Cross-Coupling between Two Unactivated C(aryl)–Heteroatom Bonds 4 Cr-Catalyzed Functionalization of Unactivated C(aryl)–H Bonds 5 Conclusion and Outlook


2019 ◽  
Author(s):  
Benjamin T. Boyle ◽  
Michael C. Hilton ◽  
Andrew McNally

Distinct approaches to synthesize bis-azine biaryls are in demand as these compounds have multiple applications in the chemical sciences and are challenging targets for metal-catalyzed cross-coupling reactions. Most approaches focus on developing new reagents as the formal nucleophilic coupling partner that can function in metal-catalyzed processes. We present an alternative approach using pyridine and diazine phosphines as nucleophilic partners and chloroazines where the heterobiaryl bond is formed via a tandem S<sub><i>N</i></sub>Ar-phosphorus ligand-coupling sequence. The heteroaryl phosphines are prepared from chloroazines and are bench stable solids. Using this strategy, a range of bis-azine biaryls can be formed from abundant chloroazines that would be challenging using traditional approaches and a one-pot cross-electrophile coupling of two chloroazines is feasible.


2019 ◽  
Author(s):  
Benjamin T. Boyle ◽  
Michael C. Hilton ◽  
Andrew McNally

Distinct approaches to synthesize bis-azine biaryls are in demand as these compounds have multiple applications in the chemical sciences and are challenging targets for metal-catalyzed cross-coupling reactions. Most approaches focus on developing new reagents as the formal nucleophilic coupling partner that can function in metal-catalyzed processes. We present an alternative approach using pyridine and diazine phosphines as nucleophilic partners and chloroazines where the heterobiaryl bond is formed via a tandem S<sub><i>N</i></sub>Ar-phosphorus ligand-coupling sequence. The heteroaryl phosphines are prepared from chloroazines and are bench stable solids. Using this strategy, a range of bis-azine biaryls can be formed from abundant chloroazines that would be challenging using traditional approaches and a one-pot cross-electrophile coupling of two chloroazines is feasible.


2001 ◽  
Vol 30 (12) ◽  
pp. 1324-1325 ◽  
Author(s):  
Masaaki Kurihara ◽  
Taeko Hayashi ◽  
Naoki Miyata

2014 ◽  
Vol 10 ◽  
pp. 3031-3037 ◽  
Author(s):  
Kuppusamy Bharathimohan ◽  
Thanasekaran Ponpandian ◽  
A Jafar Ahamed ◽  
Nattamai Bhuvanesh

Herein, we describe a one-pot protocol for the synthesis of a novel series of polycyclic triazole derivatives. Transition metal-catalyzed decarboxylative CuAAC and dehydrogenative cross coupling reactions are combined in a single flask and achieved good yields of the respective triazoles (up to 97% yield). This methodology is more convenient to produce the complex polycyclic molecules in a simple way.


2017 ◽  
Vol 12 (5) ◽  
pp. 1934578X1701200
Author(s):  
Silvia Roscales ◽  
Joaquín Plumet

Metathesis reactions is firmly established as a valuable synthetic tool in organic chemistry, clearly comparable with the venerable Diels-Alder and Wittig reactions and, more recently, with the metal-catalyzed cross-coupling reactions. Metathesis reactions can be considered as a fascinating synthetic methodology, allowing different variants regarding substrate (alkene and alkyne metathesis) and type of metathetical reactions. On the other hand, tandem metathesis reactions such Ring Rearrangement Metathesis (RRM) and the coupling of metathesis reaction with other reactions of alkenes such as Diels-Alder or Heck reactions, makes metathesis one of the most powerful and reliable synthetic procedure. In particular, Ring-Rearrangement Metathesis (RRM) refers to the combination of several metathesis transformations into a domino process such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) and ROM-cross metathesis (CM) in a one-pot operation. RRM delivers complex frameworks that are difficult to assemble by conventional methods constitutingan atom economic process. RRM is applicable to mono- and polycyclic systems of varying ring sizes such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, pyran systems, bicyclo[2.2.1]heptene derivatives, bicyclo[2.2.2]octene derivatives, bicyclo[3.2.1]octene derivatives and bicyclo[3.2.1]octene derivatives. In this review our attention has focused on the RRM reactions in 7-oxabicyclo[2.2.1]heptene derivatives and on their application in the synthesis of natural products or significant subunits of them.


2019 ◽  
Author(s):  
Victor Bloemendal ◽  
Floris P. J. T. Rutjes ◽  
Thomas J. Boltje ◽  
Daan Sondag ◽  
Hidde Elferink ◽  
...  

<p>In this manuscript we describe a modular pathway to synthesize biologically relevant (–)-<i>trans</i>-Δ<sup>8</sup>-THC derivatives, which can be used to modulate the pharmacologically important CB<sub>1</sub> and CB<sub>2</sub> receptors. This pathway involves a one-pot Friedel-Crafts alkylation/cyclization protocol, followed by Suzuki-Miyaura cross-coupling reactions and gives rise to a series of new Δ<sup>8</sup>-THC derivatives. In addition, we demonstrate using extensive NMR evidence that similar halide-substituted Friedel-Crafts alkylation/cyclization products in previous articles were wrongly assigned as the para-isomers, which also has consequence for the assignment of the subsequent cross-coupled products and interpretation of their biological activity. </p> <p>Considering the importance of the availability of THC derivatives in medicinal chemistry research and the fact that previously synthesized compounds were wrongly assigned, we feel this research is describing a straightforward pathway into new cannabinoids.</p>


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2006 ◽  
Vol 71 (7) ◽  
pp. 2802-2810 ◽  
Author(s):  
Susana López ◽  
Francisco Fernández-Trillo ◽  
Pilar Midón ◽  
Luis Castedo ◽  
Carlos Saá

Sign in / Sign up

Export Citation Format

Share Document