scholarly journals Propofol Reduces Microelectrode-Recording Artefacts caused by Parkinsonian Tremor during Deep Brain Stimulation

2018 ◽  
Vol 05 (01) ◽  
pp. 21-25
Author(s):  
Jason Chui ◽  
Rizq Alamri ◽  
Frank Bihari ◽  
Matthew Hebb ◽  
Lakshmikumar Venkatraghavan

AbstractA 51-year-old male with medically refractory Parkinson's disease was scheduled for bilateral deep brain stimulation (DBS). During microelectrode recordings (MERs) of right side DBS, the patient developed severe sustained whole-body tremors causing severe artefacts in MER. The right side DBS electrode was inserted with suboptimal MER. For the creation of left burr hole, propofol infusion at a rate of 20 μg/kg/min, was used and soon after, all tremor activity ceased. Propofol infusion was continued during left side MER. With the absence of tremors, left subthalamic nucleus spike activity was better identified and neurological testing could take place. At 6 months after DBS, the patient’s symptoms had improved significantly without the need for levodopa.

2013 ◽  
Vol 2013 ◽  
pp. 1-2
Author(s):  
Dursun Aygun ◽  
Ersoy Kocabicak ◽  
Onur Yildiz ◽  
Musa Kazim Onar ◽  
Hatice Guz ◽  
...  

In advanced Parkinson's disease (PD), deep brain stimulation (DBS) may be an alternative option for the treatment of motor symptoms. Side effects associated with subthalamic nucleus (STN) DBS in patients with PD are emerging as the most frequent sensory and motor symptoms. DBS-related syncope is reported as extremely rare. We wanted to discuss the mechanisms of syncope associated with STN DBS in a patient with Parkinson's disease.Case report.Sixty-three-year-old female patient is followed up with diagnosis of idiopathic Parkinson's disease for 6 years in our clinic. The patient has undergone STN DBS due to painful dystonia and drug resistant tremor. During the operation, when the left STN was stimulated at 5 milliampere (mAmp), the patient developed presyncopal symptoms. However, when the stimulation was stopped symptoms improved. During the early period after the operation, when the right STN was stimulated at 1.3 millivolts (mV), she developed the pre-yncopal symptoms and then syncope. Our case shows that STN DBS may lead to directly autonomic symptoms resulting in syncope during stimulation-on (stim-on).


2006 ◽  
Vol 58 (suppl_1) ◽  
pp. ONS-96-ONS-102 ◽  
Author(s):  
Ramin Amirnovin ◽  
Ziv M. Williams ◽  
G. Rees Cosgrove ◽  
Emad N. Eskandar

Abstract OBJECTIVE: Subthalamic deep brain stimulation (DBS) has rapidly become the standard surgical therapy for medically refractory Parkinson disease. However, in spite of its wide acceptance, there is considerable variability in the technical approach. This study details our technique and experience in performing microelectrode recording (MER) guided subthalamic nucleus (STN) DBS in the treatment of Parkinson disease. METHODS: Forty patients underwent surgery for the implantation of 70 STN DBS electrodes. Stereotactic localization was performed using a combination of magnetic resonance and computed tomographic imaging. We used an array of three microelectrodes, separated by 2 mm, for physiological localization of the STN. The final location was selected based on MER and macrostimulation through the DBS electrode. RESULTS: The trajectory selected for the DBS electrode had an average pass through the STN of 5.6 ± 0.4 mm on the left and 5.7 ± 0.4 mm on the right. The predicted location was used in 42% of the cases but was modified by MER in the remaining 58%. Patients were typically discharged on the second postoperative day. Eighty-five percent of patients were sent home, 13% required short-term rehabilitation, and one patient required long-term nursing services. Seven complications occurred over 4 years. Four patients suffered small hemorrhages, one patient experienced a lead migration, one developed an infection of the pulse generator, and one patient suffered from a superficial cranial infection. CONCLUSION: Simultaneous bilateral MER-guided subthalamic DBS is a relatively safe and well-tolerated procedure. MER plays an important role in optimal localization of the DBS electrodes.


2017 ◽  
Vol 15 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Andreas Nowacki ◽  
Ines Debove ◽  
Michael Fiechter ◽  
Frédéric Rossi ◽  
Markus Florian Oertel ◽  
...  

Abstract BACKGROUND Targeting accuracy in deep brain stimulation (DBS) surgery can be defined as the level of accordance between selected and anatomic real target reflected by characteristic electrophysiological results of microelectrode recording (MER). OBJECTIVE To determine the correspondence between the preoperative predicted target based on modern 3-T magnetic resonance imaging (MRI) and intraoperative MER results separately on the initial and consecutive second side of surgery. METHODS Retrospective cohort study of 86 trajectories of DBS electrodes implanted into the subthalamic nucleus (STN) of patients with Parkinson's disease. The entrance point of the electrode into the STN and the length of the electrode trajectory crossing the STN were determined by intraoperative MER findings and 3 T T2-weighted magnetic resonance images with 1-mm slice thickness. RESULTS Average difference between MRI- and MER-based trajectory lengths crossing the STN was 0.28 ± 1.02 mm (95% CI: −0.51 to −0.05 mm). There was a statistically significant difference between the MRI- and MER-based entry points on the initial and second side of surgery (P = .04). Forty-three percent of the patients had a difference of more than ±1 mm of the MRI-based-predicted and the MER-based-determined entry points into the STN with values ranging from −3.0 to + 4.5 mm. CONCLUSION STN MRI-based targeting is accurate in the majority of cases on the first and second side of surgery. In 43% of implanted electrodes, we found a relevant deviation of more than 1 mm, supporting the concept of MER as an important tool to guide and optimize targeting and electrode placement.


2014 ◽  
Vol 26 (3) ◽  
pp. 543-550 ◽  
Author(s):  
Barbara Schmalbach ◽  
Veronika Günther ◽  
Jan Raethjen ◽  
Stefanie Wailke ◽  
Daniela Falk ◽  
...  

Spatial attention is a lateralized feature of the human brain. Whereas the role of cortical areas of the nondominant hemisphere on spatial attention has been investigated in detail, the impact of the BG, and more precisely the subthalamic nucleus, on signs and symptoms of spatial attention is not well understood. Here we used unilateral deep brain stimulation of the subthalamic nucleus to reversibly, specifically, and intraindividually modify the neuronal BG outflow and its consequences on signs and symptoms of visuospatial attention in patients suffering from Parkinson disease. We tested 13 patients with Parkinson disease and chronic deep brain stimulation in three stimulation settings: unilateral right and left deep brain stimulation of the subthalamic nucleus as well as bilateral deep brain stimulation of the subthalamic nucleus. In all three stimulation settings, the patients viewed a set of pictures while an eye-tracker system recorded eye movements. During the exploration of the visual stimuli, we analyzed the time spent in each visual hemispace, as well as the number, duration, amplitude, peak velocity, acceleration peak, and speed of saccades. In the unilateral left-sided stimulation setting, patients show a shorter ipsilateral exploration time of the extrapersonal space, whereas number, duration, and speed of saccades did not differ between the different stimulation settings. These results demonstrated reduced visuospatial attention toward the side contralateral to the right subthalamic nucleus that was not being stimulated in a unilateral left-sided stimulation. Turning on the right stimulator, the reduced visuospatial attention vanished. These results support the involvement of the subthalamic nucleus in modulating spatial attention. Therefore, the subthalamic nucleus is part of the subcortical network that subserves spatial attention.


Sign in / Sign up

Export Citation Format

Share Document