Detection and Quantitation of Cleaved and Uncleaved High Molecular Weight Kininogen in Plasma by Ligand Blotting with Radiolabeled Plasma Prekallikrein or Factor XI

1988 ◽  
Vol 59 (02) ◽  
pp. 151-161 ◽  
Author(s):  
Bernhard Lämmle ◽  
Bruce L Zuraw ◽  
Mary Jo Heeb ◽  
Hans Peter Schwarz ◽  
Mauro Berrettini ◽  
...  

SummaryA method for the quantitative assay of native single chain and kallikrein cleaved two-chain high molecular weight (HMW)-kininogen in plasma is described. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole plasma is followed by electrotransfer of the electropherogram to nitrocellulose membranes and detection of the blotted HMW-kininogen with its physiologic ligands, radiolabeled plasma prekallikrein or radiolabeled factor XI. Using unreduced SDS-PAGE cleaved two-chain HMW-kininogen (Mr ∼107,000 and 95,000), is elec-trophoretically separated from uncleaved single chain HMW-kininogen (Mr ∼150,000). Counting the radioactivity of the nitrocellulose pieces corresponding to cleaved HMW-kininogen permits its quantitative measurement by comparison with standards consisting of decreasing amounts of fully dextran sulfate activated normal human plasma. Single chain HMW-kininogen is similarly assayed using reduced SDS-PAGE and unactivated normal human plasma standards.This technique is highly specific and sensitive to about 50 ng of either cleaved or uncleaved HMW-kininogen. Varying amounts of cleaved HMW-kininogen were found in a small series of plasmas from patients suffering from various inflammatory conditions. Higher levels of in vivo cleaved HMW-kininogen were observed during acute attacks of hereditary angioedema due to Cl-inhibitor deficiency. This technique may be useful for the assessment of the degree of in vitro or in vivo activation of the contact system.

1987 ◽  
Author(s):  
B Lämmle ◽  
B L Zuraw ◽  
M J Heeb ◽  
H P Schwarz ◽  
J G Curd ◽  
...  

A method for the quantitative assay of native single chain and kallikrein cleaved two-chain high molecular weight kininogen (HMWK) in plasma has been developed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole plasma is followed by electroblotting of the electropherogram to nitrocellulose membranes and detection of the inmobilized HMWK with its physiologic ligands, plasma prekallikrein or factor XI. Using 1251-prekallikrein or 125I-F.XI overlay nitrocellulose bound HMWK can be visualized by autoradiography.Using unreduced SDS-PAGE cleaved two-chain HMWK (Mr 107,000 and 95,000) is electrophoretically separated from uncleaved single chain HMWK (Mr 150,000). Counting the radioactivity of the nitrocellulose pieces corresponding to cleaved HMWK permits its quantitative measurement by comparison with standards consisting of decreasing amounts of fully dextran sulfate activated normal human plasma. Single chain HMWK is similarly assayed using reduced SDS-PAGE and unactivated normal human plasma standards.This technique is highly specific and sensitive to ˜ 50 ng of either cleaved or uncleaved HMWK. Varying concentrations of cleaved HMWK were found in plasmas from patients suffering from various systemic inflanmatory conditions. Higher levels of in vivo cleaved HMWK were observed during acute attacks of hereditary angioedema due to Cl-inhibitor deficiency.This technique may be useful for the assessment of the degree of in vitro or in vivo activation of the contact system of plasma.


1992 ◽  
Vol 67 (04) ◽  
pp. 440-444 ◽  
Author(s):  
Hiroko Tsuda ◽  
Toshiyuki Miyata ◽  
Sadaaki Iwanaga ◽  
Tetsuro Yamamoto

SummaryThe analysis of normal human plasma by fibrin autography revealed four species of plasminogen activator (PA) activity related to tissue-type PA, factor XII, prekallikrein and urokinase-type PA (u-PA). The u-PA activity increased significantly by incubating plasma with dextran sulfate. This increase was coincident with both the cleavage of factor XII and the complex formation of activated factor XII with its plasma inhibitors, which were determined by immunoblotting procedure. The dextran sulfate-dependent activation of u-PA required both factor XII and prekallikrein, but did not require either plasminogen or factor XI. High molecular weight kininogen was required only at a low concentration of dextran sulfate. Thus the results indicate that the factor XII and prekallikrein-mediated activation of single chain u-PA (scu-PA) operates as a major pathway of scu-PA activation in whole plasma in contact with dextran sulfate.


1999 ◽  
Vol 82 (09) ◽  
pp. 1033-1040 ◽  
Author(s):  
K. A. Mitropoulos

SummaryThe contribution of the various components of the contact system in the generation of factor XIIa (FXIIa) and of kallikrein (KRN) on an electronegative surface and the release of the generated enzymes to the bulk phase was examined in mixtures of normal human plasma and plasmas congenitally deficient in these components. The incubation of normal human plasma in the presence of sulphatide vesicles (40 μM) resulted in a fast generation of amidolytic activities due to FXIIa and to KRN followed by slower first-order inactivation rates of FXIIa (k’FXIIa) and of KRN (k’KRN) due to the presence of esterase inhibitors. Variation of the levels of factor XII (FXII), over a wide range, showed little effect on levels of FXIIa and of KRN but no activities were detected in 100% FXII-deficient plasma. The variation of prekallikrein (PKRN) concentration showed little effect on the generation of FXIIa but the generation of KRN declined linearly with the decrease in the level of PKRN. No activities were detected on treatment of PKRN-deficient plasma. The variation in the concentration of high molecular weight kininogen (HK) showed effects on FXIIa and KRN that were qualitatively similar to those seen on variation of PKRN but 100% HK-deficient plasma generated considerable activities of both FXIIa and KRN. The variation in the concentration of factor XI (FXI) showed no effect on the generation of FXIIa, whereas KRN levels increased linearly with the contribution of FXI-deficient in normal plasma. The present results suggest that the contiguous binding of FXIIa, FXII, PKRN-HK and FXI-HK onto the electronegative surface induces a rapid generation of FXIIa and KRN. The bound PKRN-HK complex prevents the release of generated FXIIa and therefore further binding and activation of FXII from the bulk phase. Consequently, the turnover of FXII is independent of its levels in the bulk phase and is rather related to the concentration of contact surface. The generated KRN is also protected by HK. However, since the enzyme responsible for the activation of PKRN-HK is FXIIa, the levels of generated KRN are positively related to the concentration of substrate.


1992 ◽  
Vol 67 (01) ◽  
pp. 060-062 ◽  
Author(s):  
J Harsfalvi ◽  
E Tarcsa ◽  
M Udvardy ◽  
G Zajka ◽  
T Szarvas ◽  
...  

Summaryɛ(γ-glutamyl)lysine isodipeptide has been detected in normal human plasma by a sensitive HPLC technique in a concentration of 1.9-3.6 μmol/1. Incubation of in vitro clotted plasma at 37° C for 12 h resulted in an increased amount of isodipeptide, and there was no further significant change when streptokinase was also present. Increased in vivo isodipeptide concentrations were also observed in hypercoagulable states and during fibrinolytic therapy.


Sign in / Sign up

Export Citation Format

Share Document