ASSOCIATION OF HEPARIN AND FACTOR Xa: INFLUENCE ON THE RATE OF INHIBITION OF FACTOR Xa BY ANTITHROMBIN III-HEPARIN

1987 ◽  
Author(s):  
B A Owen ◽  
W G Owen

Association of heparin non-covalently with bovine factor Xa was analyzed by Superose-12 gel chromatography. In 0.05 M NaCl, 0.02 M Tris, pH 7.5, DEGR-Xa (factor Xa inactivated by dans-Glu-Gly-Arg-CH2Cl) was eluted as a single, sharp peak at Ve/Vt=0-65 (elution volume/internal volume). Mixtures of heparin and DEGR-Xa were eluted as two partially resolved peaks of protein at Ve/Vt=0.59 and 0.65. The fraction of DEGFUXa in the leading peak was directly proportional to [heparin], and at 100 yM heparin the leading peak contained more than half the total protein. When 0.02 M HEPES was substituted for Tris a single, slightly broadened peak at Ve/Vt=0.64 was obtained on chromatography of 100 μM heparin and 10 μM DEGR-Xa. In a buffer system comprising 0.02 M Tris, 0.02 M HEPES, 0.03 M NaCl, pH 7.5, two peaks were eluted at Ve/Vt=0.59 and 0.65. Therefore, Tris increases the affinity of DEGR-Xa for heparin.Solutions buffered with Tris or HEPES were compared for effects on the kinetics of inhibition of factor Xa by antithrombin III-heparin. Reaction mixtures containing 1 nM factor Xa, 30 nM heparin and 600 nM antithrombin III were assayed with S-2222 at intervals of 2-10 sec. Reagent concentrations were chosen (a) to assure pseudo-first-order kinetics, (b) to have [heparin]<< Kq for factor Xa-heparin, and (c) to bind virtually all available heparin to antithrombin III. The same second-order rate constant, Kobs=2.5×107 M−1s−1, was obtained in both buffer systems. We conclude that the association of factor Xa with heparin observed directly by gel chromatography does not contribute to the reaction rate of factor Xa with antithrombin III-heparin.

1989 ◽  
Vol 262 (2) ◽  
pp. 651-658 ◽  
Author(s):  
M F Scully ◽  
V Ellis ◽  
N Shah ◽  
V Kakkar

The kinetics of inhibition of human alpha-thrombin and coagulation Factor Xa by antithrombin III were examined under pseudo-first-order reaction conditions as a function of the concentration of heparan sulphate with high affinity for antithrombin III. The maximum observed second-order rate constant was, for the antithrombin III-thrombin reaction, 1.2 x 10(9) M-1.min-1 compared with 2.4 x 10(9) M-1.min-1 in the presence of high-affinity heparin. However, the maximum rate was catalysed by much higher concentrations of heparan sulphate (1.3 microM) than of heparin (0.025 microM). Differences were also observed in the maximal acceleration of the antithrombin III-Factor Xa interaction: 1.2 x 10(9) M-1.min-1 at 0.2 microM-heparin sulphate compared with 2.2 x 10(9) M-1.min-1 at 0.04 microM-heparin. The differences in properties of heparan sulphate and heparin were analysed by using the random bi-reactant model of heparin action [Griffith (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5460-5464]. It was observed that the apparent binding affinity for thrombin was higher for heparan sulphate (180 nM) than for heparin (14 nM). The rate constant for transformation of the antithrombin III-Factor Xa complex into irreversible product differed between heparan sulphate (96 min-1) and heparin (429 min-1). These properties of the high-affinity heparan sulphate may be of importance in consideration of a putative role in the control of intravascular haemostasis.


1992 ◽  
Vol 70 (8) ◽  
pp. 2224-2233 ◽  
Author(s):  
Keith Vaughan ◽  
Donald L. Hooper ◽  
Marcus P. Merrin

The kinetics of hydyrolysis of a series of 1-aryl-3-aryloxymethyl-3-methyltriazenes, Ar-N=N-NMe-CH2OAr′, was studied over the pH range 2–7.5. Reactions were followed by the change in UV absorbance spectra of the triazenes. The aryloxymethyltriazenes decompose more slowly at pH 7.5 than the hydroxymethyltriazenes, Ar-N=NMe-CH2OH; the hydrolysis is favoured by the presence of an electron-withdrawing group in Ar′. A mixed isopropanol/buffer system was developed in order to improve solubility of the aryloxymethyl triazenes. Lowering the pH caused an increase in the rate of hydrolysis and under strongly acidic conditions an electron-withdrawing group in Ar′ actually slows down the reaction. A Hammett plot of the pseudo-first-order rate constant, kobs, is curved, indicating that two or more mechanisms operate simultaneously and that the contribution of each mechanism is substituent-dependent. A plot of kobs vs. [buffer] is linear; the slope of the plot affords the rate constant, kb for the buffer-catalyzed reaction for each substituent. A Hammett plot of kb vs. σ is linear with ρ = +0.55, suggesting that the buffer-catalyzed reaction involves nucleophilic displacement of the phenoxy group by the buffer anion. Further analysis afforded the specific acid-catalyzed rate constants, [Formula: see text], for each substituent; this component of the reaction has a negative ρ, consistent with a mechanism involving protonation at the ether oxygen. The postulation that specific acid catalysis is a component of the reaction mechanism was confirmed by the observation of a solvent deuterium isotope effect, 2.28 > kH/kD > 1.60. Only the p-NO2 and p-CN phenyloxymethyltriazenes showed any spontaneous decomposition.


1989 ◽  
Vol 257 (2) ◽  
pp. 541-548 ◽  
Author(s):  
P R Young ◽  
A V Briedis

The major glutathione S-transferase isoenzyme from bovine brain was isolated and purified approx. 500-fold. The enzyme has a pI of 7.39 +/- 0.02 and consists of two non-identical subunits having apparent Mr values of 22,000 and 24,000. The enzyme is uniformly distributed in brain, and kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate suggest a random rapid-equilibrium mechanism. The kinetics of inhibition by product, by GSH analogues and by NADH are consistent with the suggested mechanism and require inhibitor binding to several different enzyme forms. Long-chain fatty acids are excellent inhibitors of the enzyme, and values of 1nKi for hexanoic acid, octanoic acid, decanoic acid and lauric acid form a linear series when plotted as a function of alkyl chain length. A free-energy change of -1900 J/mol (-455 cal/mol) per CH2 unit is calculated for the contribution of hydrophobic binding energy to the inhibition constants. The turnover number of the purified enzyme dimer is approx. 3400/min. When compared with the second-order rate constant for the reaction between CDNB and GSH, the enzyme is providing a rate acceleration of about 1000-fold. The role of entropic contributions to this small rate acceleration is discussed.


1981 ◽  
Vol 9 (2) ◽  
pp. 310P-310P
Author(s):  
I. R. MacGregor ◽  
V. Ellis ◽  
M. F. Scully ◽  
V. V. Kakkar

2002 ◽  
Vol 80 (5) ◽  
pp. 517-527 ◽  
Author(s):  
Mohammad Rahimizadeh ◽  
Karen Kam ◽  
Stephen I Jenkins ◽  
Robert S McDonald ◽  
Paul HM Harrison

Eight N-acetyl-N-aroyl-glycolurils were prepared and found to undergo efficient tert-butoxide-promoted Claisen-like condensation between the two acyl moieties. The kinetics for formation of each of the N-(aroylacetyl)gly coluril products were monitored by UV spectroscopy. The reaction exhibited pseudo-first-order kinetics in substrate in the presence of excess base. For the parent benzoyl compound the observed first-order rate constant (kobs) was linearly dependent on the concentration of the base, tert-butoxide. A Hammett plot of the resulting apparent second-order rate constants (kapp) vs. σ for each of the eight aroyl derivatives was linear and had a positive ρ value 1.04 ± 0.04), demonstrating that the substituent on the aromatic ring exerts a significant effect upon the condensation reaction. The corresponding plot for three [D3]acetyl analogues was also linear, but the slope was reduced by 20% relative to the protonated compounds. The isotope effect (kHapp/kDapp) thus increased from 1.4 (benzoyl) to 2.6 (p-nitrobenzoyl). The results are consistent with a three-step mechanism in which both deprotonation of the acetyl entity and the ensuing nucleophilic attack of the resulting enolate on the benzoyl group are partially rate-determining steps. The tetrahedral intermediate thus produced rapidly collapses to the product. For the [D3]acetyl benzoyl derivative, exchange of substrate deuterium with solvent hydrogen due to reprotonation of the enolate intermediate occurs at a rate that is similar to that of condensation, but the enolate partitions towards the product when electron withdrawing groups are present in the aroyl ring. Thus, despite the presence of a large excess of co-solvent tert-butanol, the efficiency with which the enolate undergoes condensation remains high. The clean kinetics observed allows further exploration of the details of this intramolecular Claisen-like condensation process.Key words: Claisen condensation, glycoluril, kinetics, Hammett, mechanism.


2020 ◽  
Vol 15 (3) ◽  
pp. 853-860
Author(s):  
K. V. Nagalakshmi ◽  
P. Shyamala

The kinetics of acid hydrolysis of bis(2,2';6',2''–terpyridyl) iron(II) complex has been studied in CTAB/Hexane/Chloroform reverse micelles. The reaction obeys first order kinetics with respect to each of the reactants at all values of W, {W= [H2O]/[CTAB]}. In the reverse micellar medium, the reaction is much slower compared to aqueous medium due to low micropolarity of the water pools which does not facilitate a reaction between reactants of same charge. The effect of variation of W {W=[H2O]/[CTAB]} at constant [CTAB] and variation of [CTAB] at fixed W has been studied. The second order rate constant (k2) of the reaction increases as the value of W increases up to W = 8.88 and remains constant thereafter and it is independent of concentration of [CTAB] at constant W. The variation of rate of reaction with W has been explained by considering variation of micropolarity and ionic strength of water pools of reverse micelles with W. Copyright © 2020 BCREC Group. All rights reserved 


1986 ◽  
Vol 64 (5) ◽  
pp. 969-972 ◽  
Author(s):  
Donald C. Wigfield ◽  
Season Tse

The kinetics of oxidation of the mercurous ion by peroxidase have been measured by following the disappearance of mercurous ion using cold-vapour atomic absorption spectroscopy. Pseudo-first-order kinetics are observed with respect to mercurous ion, and the pseudo-first-order rate constants are linearly related to peroxidase concentration, showing first-order dependence on peroxidase. This behaviour is identical to oxidation of elemental mercury, and the second-order rate constant, 1.44 × 104 M−1 s−1 at 23 °C, is also, within experimental error, the same as that for elemental mercury oxidation. The data are interpreted in terms of peroxidase-induced disproportionation of the mercurous dimer, followed by two-electron oxidation of zero-valent mercury.


1987 ◽  
Author(s):  
J Pieters ◽  
G willems ◽  
H C Hemker ◽  
T Lindout

The heparin-catalyzed inactivation of activated coagulation factors by antithrombin III (AT III) has mostly been studied for isolated serine proteases. However, we decided to study the action of heparin and AT III under more physiological conditions, i.e. during the activation of factor X by factor IXa in the presence of phospholipid and calcium. Thereby we made use of a mathematical model which describes the generation of factor Xa by factor IXa, phospholipid and calcium in the presence of AT III and heparin. Fitting the experimental factor Xa generation curve to a set of equations gave the pseudo-first-order rate constants of factor Xa and factor IXa. In a first approach we examined the effect of AT III alone on factor X activation. We found that the second order rate constant of inhibition of formed factor Xa was 2 x 10 5M-1min-1 , whereas that of factor Xa in free solution was 5 x 10 5M-1min-1 , indicating that phospholipid-bound factor X competes with AT III for factor Xa. The second order rate constant of inhibiton of factor IXa, either in the presence or absence of accessory components, was 8 x 103 M-1min-1. Unfractionated heparin (UFH; 168 USP units/mg) was found to stimulate the inhibition of generated factor Xa by AT III (200 nM) with 0.1 min-1 per nM of UFH, and a synthetic pentasaccharide (PS; 4000 anti-Xa units/mg) stimulated this inhibition with only 0.03 min-1per nM. Due to the presence of phospholipid-bound factor X this stimulation was 4-fold less when compared with factor Xa in free solution. At UFH concentrations higher than 3 nM, and PS concentrations exceeding 10 nM hardly any active factor Xa generation could be measured because of the rapid inactivation of factor Xa whereas factor IXa was not inhibited. Using a factor IXa assay we found that PS, even at relatively high concentrations, had no effect on factor IXa inactivation by AT III (200 nM), both in the presence and absence of accessory components. The inactivation of factor IXa by AT III (200 nM) during factor X activation was stimulated by UFH with 1.6 x 10 -2min-1 per nM of UFH. Surprisingly, this was 4-fold more when compared with factor IXa in the absence of accessory components. We established that calcium stimulates the heparin-dependent inhibition of factor IXa.


1982 ◽  
Vol 207 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Ȧke Danielsson ◽  
Ingemar Björk

General aspects of the mechanism of antithrombin action were elucidated by a comparison of the inactivation of trypsin by antithrombin with the inactivation of coagulation proteinases by the inhibitor. Bovine antithrombin and bovine trypsin were shown to form an inactive equimolar complex. A non-complexed, proteolytically modified form of antithrombin, electrophoretically identical with that formed in the reaction with coagulation proteinases, was also produced in the reaction with trypsin. In the absence of heparin, the inactivation of trypsin by antithrombin was 20 times faster than the inactivation of thrombin; the second-order rate constant was 1.5 × 105m−1·s−1 at 25°C and pH 7.4. However, the inhibition of thrombin was accelerated about 30 times more efficiently by small amounts of heparin than was trypsin inhibition. Dissociation of the antithrombin–trypsin complex at pH 7.4 followed first-order kinetics with a half-life for the complex of about 80h at 25°C. The complex was rapidly and quantitatively dissociated at pH 11, resulting in the liberation of a modified two-chain form of the inhibitor, cleaved at the same Arg–Ser bond as in modified antithrombin released from complexes with thrombin, Factor Xa and Factor IXa. This supports the previous proposal that this bond is the active-site bond of antithrombin. Antisera specific for thrombin-modified antithrombin reacted with purified antithrombin–trypsin complex, indicating that the inhibitor was present in the complex in a form immunologically identical with thrombin-modified antithrombin. The results thus suggest a common mechanism, but different kinetics, for the inhibition of trypsin and coagulation proteinases by antithrombin.


1984 ◽  
Vol 222 (3) ◽  
pp. 571-578 ◽  
Author(s):  
M F Scully ◽  
V V Kakkar

The kinetics of inhibition of human and bovine alpha-thrombin and human factor Xa by antithrombin III were examined under pseudo-first-order conditions as a function of the concentration of pentosan polysulphate [a fully sulphated (beta 1-4)-linked D-xylopyranose with a single laterally positioned 4-O-methyl-alpha-D-glucuronic acid]. Double-reciprocal plots of the observed first-order rate constant against concentration of pentosan polysulphate gave straight lines, intercepts on the axes giving values for maximum increase in second-order rate constant (by calculation) and apparent dissociation constant. These values were: for human alpha-thrombin 1.52×10(7) M-1 . min-1 and 3.6 microM respectively, for bovine alpha-thrombin 6.56×10(6) M-1 . min-1 and 0.16 microM and for factor Xa 6.86×106 M-1 . min-1 and 20 microM. In the presence of pentosan polysulphate the dissociation constant for the initial complex of antithrombin III and thrombin was shown to be reduced from approx. 2×10(-3) M to 61×10(-6) M without apparent change in the limiting rate constant of 750 min-1. An oligosaccharide (primarily 8-10 saccharide units) prepared from heparin and with high affinity for antithrombin III but low potency in the thrombin-antithrombin III interaction did not diminish the rate of interaction catalysed by pentosan polysulphate. The catalysis was shown to be due to a weak electrostatic interaction, since it was completely reversed by concentrations of NaCl greater than 0.3 M. It is concluded that the mechanism is independent of the heparin high-affinity binding site on antithrombin III and is probably due to binding of the high-charge-density polysaccharide to the proteinase. It is calculated that the acceleration in rate achieved, although lower than that of heparin, approaches that required to be of physiological significance and may be of importance in the anticoagulation role of antithrombin III at sites of high charge density which may occur in vivo.


Sign in / Sign up

Export Citation Format

Share Document