reverse micelles
Recently Published Documents


TOTAL DOCUMENTS

1882
(FIVE YEARS 129)

H-INDEX

84
(FIVE YEARS 6)

2022 ◽  
Vol 17 (1) ◽  
pp. 157-162
Author(s):  
K. Bhargavi ◽  
P. Shyamala ◽  
P S S Chakravarthi ◽  
K V Nagalakshmi

The oxidation of ascorbic acid by K3[Fe(CN)6] was studied in reverse micellar systems composed of CTAB (Cetyltrimethylammonium bromide), and it was found  the observed first order  (k1(aq) = 5.2×10−5 s−1, k1(rev) = 61.4×10−4 s−1) rate constant in reverse micellar medium is around forty times higher compared to aqueous medium under identical conditions. The rate enhancement (k2(aq) = 0.9×10−5 mole−1.dm3.sec−1, k2(rev) = 1.75×10−3 mole−1.dm3.sec−1)  is attributed to the large concentration effect and lower dielectric constant in the reverse micelles. The rate of the reaction increases with increase in W = {[H2O]/[surfactant]} which is explained in terms of ionic strength of the water pool. The effect of surfactant concentration on rate was explained on the basis of Berezin pseudo phase model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Author(s):  
Kohki MUKAI ◽  
Kosuke Ikeda ◽  
Reo Hatta

Abstract Increasing the thickness of the quantum dot silica coating layer reduces monodispersity and shape symmetry. This paper reports three effective ways to solve this problem and achieve a large silica-coated QDs, i.e., proper silanization on the QD surface, control of reverse micelle size by adjusting the amount of QD solvent, and two-step formation of silica shell. Proper substitution of ligands on the QD surface in the early stages of silica shell formation was important for uniform coating reaction. An amount of toluene as QD solvent determined the size of reverse micelles during the silica shell formation. There was an optimum combination of inverse micelle size and silica shell size to obtain silica-coated QDs with good monodispersity and high shape symmetry. We succeeded in growing the thick silica shell with expanding reverse micelle size by additionally supplying toluene with the raw material using the optimum silica-coated QDs as growth nucleus


2021 ◽  
Author(s):  
Christopher Gale ◽  
Mortaza Derakhshani-Molayousefi ◽  
Nancy E. Levinger

Aerosol-OT reverse micelles represent a chemical construct where surfactant molecules self-assemble to stabilize water nanodroplets ~1-10 nm in diameter. Although commonly assumed to adopt a spherical shape, all-atom molecular dynamics simulations and some experimental studies predict a non-spherical shape. If these aggregates are not spherical, then what shape do they take? Because the tools needed to evaluate the shape of something that lacks regular structure, order, or symmetry are not well developed, we present a set of three intuitive metrics- coordinate-pair eccentricity, convexity, and the curvature distribution- that estimate the shape of an amorphous object and we demonstrate their use on a simulated Aerosol-OT reverse micelle. These metrics are all well-established methods and principles in mathematics, and each provides unique information about the shape. Together, these metrics provide intuitive descriptions of amorphous shapes, facilitate ways to quantify those shapes, and follow their changes over time.


Author(s):  
Zhiqing Wu ◽  
Fan Yang ◽  
Xiaomin Li ◽  
Anthony Carroll ◽  
Wendy Loa-Kum-Cheung ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamad Reza Toorani ◽  
Mohammad-Taghi Golmakani

AbstractIn this study, lecithin (as a surfactant) was added to promote the inhibitory-mechanism of γ-oryzanol, ethyl-ferulate and ferulic acid (based on the interfacial phenomena) so as to inhibit the oxidation of stripped sunflower oil. Monitoring the amount of water production as a byproduct of oxidation showed that the water content of the lipid system increased remarkably through the oxidation progress. Lecithin enhanced the critical concentration of hydroperoxides in reverse micelles, compared to the basic state (14.8 vs. 9.2 mM), thereby improving the hydrogen-donating mechanism of antioxidants. The size of reverse micelles increased progressively during the oxidation, while two breakpoints were pointed out in the micelles growth, i.e. at the end of the initiation and the propagation phases. Based on the kinetic data, ferulic acid showed the highest antioxidant activity (23.4), compared to ethyl-ferulate (15.5) and γ-oryzanol (13.7). Generally, lecithin enhanced antioxidant activity (~ 65%) by improving the interfacial performance of antioxidants.


2021 ◽  
Vol 77 (9) ◽  
pp. 522-528
Author(s):  
Patrycja Wytrych ◽  
Józef Utko ◽  
Tadeusz Lis ◽  
Łukasz John

The synthesis and structural characterization of two new potassium triphenylsiloxides, namely, aqua(propan-2-ol)hexakis(triphenylsilanolato)hexapotassium toluene disolvate, [K6(C18H15OSi)6(C3H8O)(H2O)]·2C7H8, and diaquahexakis(triphenylsilanolato)hexapotassium, [K6(C18H15OSi)6(H2O)2], are reported. Both compounds crystallize in the triclinic space group P-1. The structure in each case resembles an alkali metal polyoxometalate-like structure, in which electrostatic interactions are observed in the metal–oxygen core. Furthermore, both compounds also resemble a reverse micelles-like architecture, in which the hydrophilic core is enclosed in a hydrophobic shell. The cores of the complexes are flanked by hydrophobic aromatic rings derived from Ph3SiO− anions, where intramolecular π-interactions between the aromatic rings and potassium cations stabilize the cores of the crystals. Moreover, in both structures, the presence of hydrogen bonds is observed; until now, no crystal structures have been described containing K atoms and triphenylsiloxide molecules in which the presence of hydrogen bonds was confirmed. Thus, these coordination entities could be considered as attractive reagents for further synthetic protocols towards heterometallic complexes.


Sign in / Sign up

Export Citation Format

Share Document