Effect of Dipyridamole on Spontaneous Platelet Aggregation in Whole Blood Decreases with the Time After Venepuncture: Evidence for the Role of ADP

1987 ◽  
Vol 58 (02) ◽  
pp. 744-748 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
J C Barbenel ◽  
C D Forbes

SummarySpontaneous platelet aggregation (SPA) was studied in human whole blood at 3, 5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter, SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of citrated blood at 37° C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10 μM at each time interval; (b) 0.5-100 μM at 3 and 30 minutes and (c) 15 μM in combination with 100 μM adenosine, 8 μM 2-chloroadenosine (2ClAd, an ADP receptor blocker) and 50 μM aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy with adenosine, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when 15 μM Dipy and 10 μM Ad were added together, the inhibitory effect of Dipy was not increased significantly, suggesting that Dipy inhibits platelet aggregation independent of Ad. The increase in SPA with the time after venepuncture was abolished when blood was taken directly into the anticoagulant containing 5 μM 2ClAd. It is suggested that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture and makes a serious contribution to the artifacts of in vitro platelet function studies.

1987 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
C D Forbes

Spontaneous platelet aggregation (SPA) was studied in human whole blood at 3,5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter (Ultra Flo 100), SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of blood at 37°C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10-5M at each time interval; (b) 0.5-100 x 10-6M at 3 and 30 minutes, and (c) 15 x 10-6M in combination with 2 x 10-4M adenosine (Ad), 8 x 10-6M 2-chloradenosine (2ClAd, a specific ADP receptor blocker) and 5 x 10-5M aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy withAd, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when an effective concentration of Dipy and an ineffective concentration of Ad (10-4M) were addedtogether, the inhibitory effect of Dipy was not increased, suggesting that Dipy inhibits platelet aggregation independent of Ad.The increase in SPA with the time after venepuncture was abolished when bloodwas taken directly into the anticoagulant containing 2ClAd (5 x 10-6M). We conclude that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture, and makes a serious contribution to the artifacts ofin vitro platelet function studies. Furthermore, the decrease in the inhibitory action of Dipy with the time after venepuncture may explain why previously, it has not been possible to observe inhibition of platelet aggregation by Dipy in platelet rich plasma which requires time to prepare.


1985 ◽  
Vol 54 (03) ◽  
pp. 612-616 ◽  
Author(s):  
A J Carter ◽  
S Heptinstall

SummaryThe platelet aggregation that occurred in whole blood in response to several aggregating agents (collagen, arachidonic acid, adenosine diphosphate, adrenaline and thrombin) was measured using an Ultra-Flo 100 Whole Blood Platelet Counter. The amounts of thromboxane B2 produced were measured by radioimmunoassay. The effects of various inhibitors of thromboxane synthesis and the effects of apyrase, an enzyme that destroys adenosine diphosphate, were determined.Platelet aggregation was always accompanied by the production of thromboxane B2, and the amounts produced depended on the nature and concentration of the aggregating agent used. The various inhibitors of thromboxane synthesis - aspirin and flurbiprofen (cyclo-oxygenase inhibitors), BW755C (a cyclo-oxygenase and lipoxygenase inhibitor) and dazoxiben (a selective thromboxane synthase inhibitor) - did not markedly inhibit aggregation. Results obtained using apyrase showed that adenosine diphosphate contributed to the aggregation process, and that its role must be acknowledged when devising means of inhibiting platelet aggregation in vivo.


1986 ◽  
Vol 55 (01) ◽  
pp. 012-018 ◽  
Author(s):  
Paolo Gresele ◽  
Jef Arnout ◽  
Hans Deckmyn ◽  
Jos Vermylen

SummaryDipyridamole inhibits platelet aggregation in whole blood at lower concentrations than in plasma. The blood cells responsible for increased effectiveness in blood are the erythrocytes. Using the impedance aggregometer we have carried out a series of pharmacological studies in vitro to elucidate the mechanism of action of dipyridamole in whole blood. Adenosine deaminase, an enzyme breaking down adenosine, reverses the inhibitory action of dipyridamole. Two different adenosine receptor antagonists, 5’-deoxy-5’-methylthioadenosine and theophylline, also partially neutralize the activity of dipyridamole in blood. Enprofylline, a phosphodiesterase inhibitor with almost no adenosine receptor antagonistic properties, potentiates the inhibition of platelet aggregation by dipyridamole. An inhibitory effect similar to that of dipyridamole can be obtained combining a pure adenosine uptake inhibitor (RE 102 BS) with a pure phosphodiesterase inhibitor (MX-MB 82 or enprofylline). Mixing the blood during preincubation with dipyridamole increases the degree of inhibition. Lowering the haematocrit slightly reduces the effectiveness.Although we did not carry out direct measurements of adenosine levels, the results of our pharmacological studies clearly show that dipyridamole inhibits platelet aggregation in whole blood by blocking the reuptake of adenosine formed from precursors released by red blood cells following microtrauma. Its slight phosphodiesterase inhibitory action potentiates the effects of adenosine on platelets.


2006 ◽  
Vol 96 (12) ◽  
pp. 781-788 ◽  
Author(s):  
Andreas Calatzis ◽  
Sandra Penz ◽  
Hajna Losonczy ◽  
Wolfgang Siess ◽  
Orsolya Tóth

SummarySeveral methods are used to analyse platelet function in whole blood. A new device to measure whole blood platelet aggregation has been developed, called multiple electrode platelet aggregometry (MEA). Our aim was to evaluate MEA in comparison with the single platelet counting (SPC) method for the measurement of platelet aggregation and platelet inhibition by aspirin or apyrase in diluted whole blood. Platelet aggregation induced by different concentrations of ADP, collagen and TRAP-6 and platelet inhibition by apyrase or aspirin were determined in citrateor hirudin-anticoagulated blood by MEA and SPC. MEA indicated that spontaneous platelet aggregation was lower, and stimulated platelet aggregation was higher in hirudin- than citrate-anticoagulated blood. In hirudin-anticoagulated, but not citrate-anticoagulated blood, spontaneous platelet aggregation measured by MEA was inhibited by apyrase. For MEA compared with SPC the dose response-curves of agonist-induced platelet aggregation in citrate- and hirudin-blood showed similar EC50 values for TRAP, and higher EC50 values for ADP (non-significant) and collagen (p<0.05). MEA and the SPC method gave similar results concerning platelet-inhibition by apyrase and aspirin. MEA was more sensitive than SPC to the inhibitory effect of aspirin in collagen-induced aggregation. In conclusion, MEA is an easy, reproducible and sensitive method for measuring spontaneous and stimulated platelet aggregation, and evaluating antiplatelet drugs in diluted whole blood. The use of hirudin as an anticoagulant is preferable to the use of citrate. MEA is a promising technique for experimental and clinical applications.


1994 ◽  
Vol 9 (5) ◽  
pp. 556-558
Author(s):  
J. E. Taylor ◽  
J. J. F. Belch ◽  
I. S. Henderson ◽  
W. K. Stewart

1990 ◽  
Vol 64 (01) ◽  
pp. 180-180
Author(s):  
Barbara Spławińska ◽  
Jerzy Kuźniar ◽  
Jacek Spławiński

1995 ◽  
Vol 15 (6) ◽  
pp. 748-753 ◽  
Author(s):  
Jonathan D. Emery ◽  
David W. Leifer ◽  
Glaci L. Moura ◽  
Patricia Southern ◽  
James H. Morrissey ◽  
...  

1986 ◽  
Vol 41 (4) ◽  
pp. 509-518 ◽  
Author(s):  
IA Greer ◽  
JJ Walker ◽  
M McLaren ◽  
AA Calder ◽  
CD Forbes

1987 ◽  
Author(s):  
D A F Chamone ◽  
M Ivany-Silva ◽  
C Cassaro ◽  
G Bellotti ◽  
C Massumoto ◽  
...  

Guarana, a methylxanthine obtained from the seeds of Paullinia cupana has been largely used in the Amazon region by native indians during centuries as stimulant. We evaluated the effect of guarana on ex-vivo and in vitro platelet aggregation induced by adenosine-5-diphosphate (ADP) in human and rat whole blood with an impedance (Chrono-Log, model 500) and in their platelet rich plasma (PRP) with an optical aggregometer (Chrono-Log, model 440). Ex-vivo studies were carried out after single oral intake of guarana. Seven healthy volunteers (5 male and 2 female) aged 19-26 years who had taken no drugs for 10 days before, ingested 8gm of crude powder of guarana. Blood samples were drawn before and 1 hour after guarana intake. We observed a significative inhibition of platelet aggregation in whole blood meanwhile PRP was un changed as compared to basal values. In vitro studies were performed in whole blood and PRP from human volunteers and male Wis-tar rats. The combined effect of guarana and adenosine was also studied. A control aggregation was always run with saline. The results demonstrated an inhibition statistically significative (p < 0.001) of platelet aggregation in whole blood. Differently from whole blood the PRP with the same concentration of guarana did not result in inhibition of ADP induced aggregation when eva luated with the impedance method. The blood incubation with adenosine and guarana resulted in synergistic inhibitory effect that was much more strinking in whole blood than in PRP. Guarana fails to inhibit aggregation of rat platelets.Our results demonstrate that guarana prevents platelet aggregation in whole blood which depends on red blood cells, probably involving adenosine.


Sign in / Sign up

Export Citation Format

Share Document