melanin contents
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 19 (4) ◽  
pp. 639-649
Author(s):  
Yun Jeong Kim ◽  
Ye Sol Goh ◽  
Waiting Cheung ◽  
Yong Sam Kim ◽  
Hyunsang Lee

Purpose: This research verified the skin whitening and moisturizing effects of hydrolyzed swiftlet nest extracts (HSNE) in vitro using human keratinocytes and melanoma.Methods: To confirm the antioxidant effect of HSNE, DPPH radical-scavenging activity was measured. To find out the whitening effect of HSNE, the genes related to melanogenesis, mRNA expression of tyrosinase (TYR), tyrosinase related protein (TRP) 1, 2 and microphthalmia associated transcription factor (MITF) were measured. We also measured the melanin contents after treatment of HSNE to confirm the anti-melanogenesis effect. Using reverse transcription polymerase chain reaction (RT-PCR), the genes related to moisturizing such as aquaporin (AQP) 3, hyaluronan synthase (HAS) 1, 2, and 3 were determined. The results of the tests were analyzed with student’s t-test and expressed as mean±standard deviation.Results: DPPH radical scavenging effects of HSNE increased in a concentration dependent manner. The expression of melanogenesis-related genes were inhibited by the treatment of HSNE in a concentration-dependent manner (MITF, TYR, TRP1, and 2). Melanin contents also decreased with the treatment of HSNE. The expression of moisturizing-related genes (HAS1, 2, 3, and AQP3) increased in a concentration-dependent manner.Conclusion: It is confirmed that the hydrolyzed swiftlet nest extracts have skin whitening and moisturizing effects and can be used as a functional cosmetic raw material.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2848
Author(s):  
In-Seon Bae ◽  
Sang Hoon Kim

Exosomes participate in intercellular communication by transferring molecules from donor to recipient cells. Exosomes are found in various body fluids, including blood, urine, cerebrospinal fluid and milk. Milk exosomes contain many endogenous microRNA molecules. MicroRNAs are small noncoding RNAs and have important roles in biological processes. The specific biological functions of milk exosomes are not well understood. In this study, we investigated the effects of milk exosomes on melanin production in melanoma cells and melanocytes. We found that milk exosomes decreased melanin contents, tyrosinase activity and the expression of melanogenesis-related genes in melanoma cells and melanocytes. Bovine-specific miR-2478 in exosomes inhibited melanin production. We found that Rap1a is a direct target gene of miR-2478 in melanoma cells and melanocytes. MiR-2478 overexpression decreased Rap1a expression, which led to downregulated melanin production and expression of melanogenesis-related genes. Inhibition of Rap1a expression decreased melanogenesis through the Akt-GSK3β signal pathway. These results support the role of miR-2478 derived from milk exosomes as a regulator of melanogenesis through direct targeting of Rap1a. These results show that milk exosomes could be useful cosmeceutical ingredients to improve whitening.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4963
Author(s):  
Heejeong Choi ◽  
Il Young Ryu ◽  
Inkyu Choi ◽  
Sultan Ullah ◽  
Hee Jin Jung ◽  
...  

To confirm that the β-phenyl-α,β-unsaturated thiocarbonyl (PUSTC) scaffold, similar to the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, acts as a core inhibitory structure for tyrosinase, twelve (Z)-5-(substituted benzylidene)-4-thioxothiazolidin-2-one ((Z)-BTTZ) derivatives were designed and synthesized. Seven of the twelve derivatives showed stronger inhibitory activity than kojic acid against mushroom tyrosinase. Compound 2b (IC50 = 0.47 ± 0.97 µM) exerted a 141-fold higher inhibitory potency than kojic acid. Kinetic studies’ results confirmed that compounds 2b and 2f are competitive tyrosinase inhibitors, which was supported by high binding affinities with the active site of tyrosinase by docking simulation. Docking results using a human tyrosinase homology model indicated that 2b and 2f might potently inhibit human tyrosinase. In vitro assays of 2b and 2f were conducted using B16F10 melanoma cells. Compounds 2b and 2f significantly and concentration-dependently inhibited intracellular melanin contents, and the anti-melanogenic effects of 2b at 10 µM and 2f at 25 µM were considerably greater than the inhibitory effect of kojic acid at 25 µM. Compounds 2b and 2f similarly inhibited cellular tyrosinase activity and melanin contents, indicating that the anti-melanogenic effects of both were due to tyrosinase inhibition. A strong binding affinity with the active site of tyrosinase and potent inhibitions of mushroom tyrosinase, cellular tyrosinase activity, and melanin generation in B16F10 cells indicates the PUSTC scaffold offers an attractive platform for the development of novel tyrosinase inhibitors.


2021 ◽  
Vol 7 (8) ◽  
pp. 619
Author(s):  
Ho-Cheng Wu ◽  
Yih-Fung Chen ◽  
Ming-Jen Cheng ◽  
Ming-Der Wu ◽  
Yen-Lin Chen ◽  
...  

Monascus species are asexually or sexually reproduced homothallic fungi that can produce a red colorant, specifically the so-called red yeast rice or Anka, which is used as a food ingredient in Asia. Traditional experiences of using Monascus for treating indigestion, enhancing blood circulation, and health remedies motivate us to investigate and repurpose Monascus-fermented products. Here, two new 5H-cyclopenta[c]pyridine type azaphilones, 5S,6S-monaspurpyridine A (1) and 5R,6R-monaspurpyridine A (2), two new xanthonoids, monasxanthones A and B (3 and 4), one new naphthalenone, monasnaphthalenone (5), and one new azaphilone, monapurpurin (6), along with two known compounds were isolated from the 70% EtOH extract of a citrinin-free domesticated strain M. purpureus BCRC 38110. The phytochemical properties of the xanthonoid and naphthalenone components were first identified from Monascus sp. differently from the representative ingredients of polyketide-derived azaphilones. UVB-induced cell viability loss and reactive oxygen species (ROS) overproduction in human keratinocytes were attenuated by monascuspirolide B (7) and ergosterol peroxide (8), indicating their photoprotective potentials. Ergosterol peroxide (8) decreased the melanin contents and tyrosinase activities of mouse melanocytes, depending on the concentration, suggesting their anti-melanogenic effects. In conclusion, six new and two known compounds were isolated from M. purpureus BCRC 38110, and two of them exhibited dermal protective activities. The results revealed the novel potential of M. purpureus for developing natural cosmeceutics against skin photoaging.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1202
Author(s):  
Hyun Kyung Lee ◽  
Jae Won Ha ◽  
Yun Jeong Hwang ◽  
Yong Chool Boo

The purpose of this study is to identify amino acid derivatives with potent anti-eumelanogenic activity. First, we compared the effects of twenty different amidated amino acids on tyrosinase (TYR)-mediated dopachrome formation in vitro and melanin content in dark-pigmented human melanoma MNT-1 cells. The results showed that only L-cysteinamide inhibited TYR-mediated dopachrome formation in vitro and reduced the melanin content of cells. Next, the antimelanogenic effect of L-cysteinamide was compared to those of other thiol compounds (L-cysteine, N-acetyl L-cysteine, glutathione, L-cysteine ethyl ester, N-acetyl L-cysteinamide, and cysteamine) and positive controls with known antimelanogenic effects (kojic acid and β-arbutin). The results showed the unique properties of L-cysteinamide, which effectively reduces melanin content without causing cytotoxicity. L-Cysteinamide did not affect the mRNA and protein levels of TYR, tyrosinase-related protein 1, and dopachrome tautomerase in MNT-1 cells. L-Cysteinamide exhibited similar properties in normal human epidermal melanocytes (HEMs). Experiments using mushroom TYR suggest that L-cysteinamide at certain concentrations can inhibit eumelanin synthesis through a dual mechanism by inhibiting TYR-catalyzed dopaquinone synthesis and by diverting the synthesized dopaquinone to the formation of DOPA-cysteinamide conjugates rather than dopachrome. Finally, L-cysteinamide was shown to increase pheomelanin content while decreasing eumelanin and total melanin contents in MNT-1 cells. This study suggests that L-cysteinamide has an optimal structure that can effectively and safely inhibit eumelanin synthesis in MNT-1 cells and HEMs, and will be useful in controlling skin hyperpigmentation.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2150
Author(s):  
SeoYeon Shin ◽  
JaeYeon Ko ◽  
MinJeong Kim ◽  
Nuri Song ◽  
KyungMok Park

Morin is a well-known flavonoid, and has been reported to have various properties, such as anti-cell death, antioxidant, and anti-inflammatory properties. Although studies on the biochemical and biological actions of morin have been reported, the melanin biosynthesis effects and molecular mechanisms are unknown. In this study, we first found that morin has the effect of enhancing melanin biosynthesis in B16F10 mouse melanoma cells, and analyzed the molecular mechanism. In this study, we examined the effects of morin on the melanin contents and tyrosinase activity, as well as the protein expression levels of the melanogenic enzymes TRP-1, TRP-2, and microphtalmia-associated transcription factor (MITF) in B16F10 mouse melanoma cells. Morin showed no cytotoxicity in the concentration range of 5–100 μM, and significantly increased the intracellular tyrosinase activity and melanin contents. In mechanism analysis, morin increased the protein expression of TRP-1, TRP-2, and MITF associated with melanogenesis. Furthermore, morin increased phosphorylated ERK and p38 at the early time, and decreased phosphorylated ERK after 12 h. The results suggest that morin enhances melanin synthesis through the MAPK signaling pathways in B16F10 mouse melanoma cells.


2021 ◽  
Vol 7 ◽  
Author(s):  
Huaxu Liu ◽  
Leilei Wang ◽  
Yan Lin ◽  
Xiaofeng Shan ◽  
Min Gao

Objective: To investigate the role of reflectance confocal microscopy (RCM) in the differential diagnosis of hypopigmented mycosis fungoides (HMF) and vitiligo.Methods: Cases with persistent hypopigmented patches, suspicious of early stage vitiligo, or HMF were imaged with RCM. The melanin contents and inflammatory conditions of the epidermis and superficial dermis of the lesions were compared with the same layers of the adjacent skin, and then, the imaged lesions were biopsied and analyzed by histology.Results: 15 cases were enrolled in this study, and based on the RCM findings, there was just slight or moderate reduction of melanin but no melanin absence in the basal cell layer of HMF lesions. The finding of monomorphous weakly refractile, oval to round cells on the basis of vesicle-like dark space was clearly elucidated in the epidermis of the lesions by RCM, which indicates the Pautrier's microabscesses on histopathology. Among those 15 cases, 13 cases were identified as HMF, and the other two cases were vitiligo, based on RCM findings, which were confirmed by histology analysis.Conclusions: The RCM findings correlated well with histology results in the screening of HMF, which indicates the RCM is an important tool in the early detection and differential diagnosis of HMF.


2020 ◽  
Vol 21 (15) ◽  
pp. 5341
Author(s):  
Min Cheol Kang ◽  
Jae-Wook Lee ◽  
Taek Hwan Lee ◽  
Lalita Subedi ◽  
Hussain M. Wahedi ◽  
...  

Skin hyperpigmentation is generally characterized by increased synthesis and deposition of melanin in the skin. UP256, containing bakuchiol, is a well-known medication for acne vulgaris. Acne sometimes leaves dark spots on the skin, and we hypothesized that UP256 may be effective against hyperpigmentation-associated diseases. UP256 was treated for anti-melanogenesis and melanocyte dendrite formation in cultured normal human epidermal melanocytes as well as in the reconstituted skin and zebrafish models. Western blot analysis and glutathione S-transferase (GST)-pull down assays were used to evaluate the expression and interaction of enzymes related in melanin synthesis and transportation. The cellular tyrosinase activity and melanin content assay revealed that UP256 decreased melanin synthesis by regulating the expression of proteins related on melanogenesis including tyrosinase, TRP-1 and -2, and SOX9. UP256 also decreased dendrite formation in melanocytes via regulating the Rac/Cdc42/α-PAK signaling proteins, without cytotoxic effects. UP256 also inhibited ciliogenesis-dependent melanogenesis in normal human epidermal melanocytes. Furthermore, UP256 suppressed melanin contents in the zebrafish and the 3D human skin tissue model. All things taken together, UP256 inhibits melanin synthesis, dendrite formation, and primary cilium formation leading to the inhibition of melanogenesis.


Cosmetics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 55
Author(s):  
Yoshihiro Tokudome ◽  
Tsuyoshi Hoshi ◽  
Sayaka Mori ◽  
Ichiro Hijikuro

Several resorcinol derivatives were synthesized and their effects on the survival rate of B16 murine melanoma cells, melanin production, and tyrosinase activity were investigated with an aim to evaluate their skin whitening effect. Twelve resorcinol derivatives were synthesized by esterification with three functional groups (L-ascorb-6-yl, ethyl, and glyceryl) linked via four alkyl chains of varying lengths (n = 2–5) at the 4-position. The structures of the 12 resorcinol derivatives were confirmed by Nuclear Magnetic Resonance (NMR). The derivatives were added to B16 murine melanoma cells and the melanin contents in the cells and culture medium were measured. To measure the tyrosinase activity, the substrate L-DOPA was added to a mushroom-derived tyrosinase solution, and the inhibition of the tyrosinase activity was determined. At 10 µM, the resorcinol derivatives did not affect the survival of the B16 murine melanoma cells, but the melanin content was reduced. At 1 µM, the derivatives significantly inhibited the tyrosinase activity in the mushroom-derived tyrosinase solution. A plot of the inhibitory effect on melanin production against the cLogP value for each resorcinol derivative indicated that the highest inhibition occurred at a cLogP value of approximately 2. Therefore, these resorcinol derivatives are expected to serve as effective skin whitening agents.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2683
Author(s):  
Da Eun Kim ◽  
Bo Yoon Chang ◽  
Sang Ok Ham ◽  
Youn Chul Kim ◽  
Sung Yeon Kim

Previous studies have confirmed the anti-melanogenic effect of the aerial part of Pueraria lobata, however, due to its inherent color, P. lobata has limited commercial use. In this study, an extract (GALM-DC) of the aerial part of P. lobata having improved color by the use of activated carbon was obtained. Furthermore, the active compound neobavaisoflavone (NBI) was identified from GALM-DC. The effect of NBI on melanogenesis, tyrosinase activity, α-glucosidase activity, and mechanism of action in melanocytes was investigated. Tyrosinase activity, melanin contents and the expression of melanin-related genes and proteins were determined in B16F10 cells. NBI reduced melanin synthesis and tyrosinase activity. Furthermore, NBI treatment reduced the mRNA and protein expression levels of MITF, TRP-1, and tyrosinase. NBI also works by phosphorylating and activating proteins that inhibit melanogenesis, such as GSK3β and ERK. Specific inhibitors of Akt/GSK-3β (LY294002) and MEK/ERK (PD98059) signaling prevented the inhibition of melanogenesis by NBI. NBI inhibited melanin production through the regulation of MEK/ERK and Akt/GSK-3β signaling pathways in α-MSH-stimulated B16F10 cells. NBI suppresses tyrosinase activity and melanogenesis through inhibition of α-glucosidase activity. Besides, NBI significantly reduced melanogenesis in a reconstructed human 3D skin model. In conclusion, these results suggest that NBI has potential as a skin-whitening agent for hyperpigmentation.


Sign in / Sign up

Export Citation Format

Share Document