b16f10 melanoma cells
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 58)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 11 (4) ◽  
pp. 4243-4254

In this work, we aimed to study the effect of caffeine-loaded gelatin nanoparticles on melanoma cells and fibroblast cells. The B16F10 murine melanoma cells and L929 fibroblast cells were treated with a different dilution ratio of caffeine-loaded gelatin nanoparticles for 24, 48, and 72 h. The cell assay results showed that treatment with caffeine-loaded gelatin nanoparticles (25 % and 50 %) effectively inhibited the proliferation, viability, and migration ability of B16F10 melanoma cells at 48 and 72 h. Moreover, we also found that the cell apoptosis of B16F10 melanoma cells was induced by treatment of 12.5, 25, and 50 % caffeine-loaded gelatin nanoparticles. In the meantime, for L929 fibroblast cells, there was no significant cell cytotoxic effects observed with identical treatment. In summary, the caffeine-loaded gelatin nanoparticles induced apoptotic process inhibited cell viability and migration ability of melanoma cells and could be an alternative therapy for melanoma cancer.


2021 ◽  
pp. 1-11
Author(s):  
Ines Bouhlel Chatti ◽  
Yosr Krichen ◽  
Mouna Maatouk ◽  
Aida Lahmar ◽  
Sonia Ghoul Mazgar ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5959
Author(s):  
Siqi Zhou ◽  
Drira Riadh ◽  
Kazuichi Sakamoto

Melanin is a natural pigment produced by cells to prevent damage caused by ultraviolet radiation. Previously, resveratrol was shown to reduce melanin synthesis. As a natural polyphenol with various biological activities, resveratrol occurs in a variety of beverages and plant foods, such as grapes. Therefore, we investigated whether grape extracts containing resveratrol also had the ability to regulate melanin synthesis. In this study, we used mouse B16F10 melanoma cells as a model for melanin synthesis with the melanogenesis-inducing α-melanocyte-stimulating hormone (α-MSH) as a positive control. Our results confirmed previous reports that resveratrol reduces melanin synthesis by reducing the activity of the rate-limiting enzyme tyrosinase. In contrast, the grape extract could not reduce melanin synthesis, and in fact promoted melanogenesis in the presence of α-MSH. The expression of genes related to melanin synthesis, such as tyrosinase, tyrosinase-related protein-1, tyrosinase-related protein-2, and microphthalmia-associated transcription factor, also supports these phenomena, which means that even in the presence of resveratrol, grape extract will strengthen the function of α-MSH in promoting melanin synthesis. Therefore, these results also provide a point of view for research on cosmetics.


2021 ◽  
Vol 22 (15) ◽  
pp. 8257
Author(s):  
Ilandarage Menu Neelaka Molagoda ◽  
Mirissa Hewage Dumindu Kavinda ◽  
Hyung Won Ryu ◽  
Yung Hyun Choi ◽  
Jin-Woo Jeong ◽  
...  

Gamma-aminobutyric acid (GABA) is considered the primary inhibitory neurotransmitter in the human cortex. However, whether GABA regulates melanogenesis has not been comprehensively elucidated. In this study, we reveal that GABA (20 mM) significantly inhibited α-melanocyte-stimulating hormone (α-MSH)-induced extracellular (from 354.9% ± 28.4% to 126.5% ± 16.0%) and intracellular melanin contents (from 236.7% ± 11.1% to 102.7% ± 23.1%) in B16F10 melanoma cells, without inducing cytotoxicity. In addition, α-MSH-induced hyperpigmentation in zebrafish larvae was inhibited from 246.3% ± 5.4% to 116.3% ± 3.1% at 40 mM GABA, displaying no apparent cardiotoxicity. We also clarify that the GABA-mediated antimelanogenic properties were related to the direct inhibition of microphthalmia-associated transcription factor (MITF) and tyrosinase expression by inhibiting cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Furthermore, under α-MSH stimulation, GABA-related antimelanogenic effects were mediated through the GABAA and GABAB receptors, with subsequent inhibition of Ca2+ accumulation. In B16F10 melanoma cells and zebrafish larvae, pretreatment with bicuculline, a GABAA receptor antagonist, and CGP 46381, a GABAB receptor antagonist, reversed the antimelanogenic effect of GABA following α-MSH treatment by upregulating Ca2+ accumulation. In conclusion, our results indicate that GABA inhibits α-MSH-induced melanogenesis. Hence, in addition to the health benefits of GABA in the central nervous system, it could ameliorate hyperpigmentation disorders.


2021 ◽  
Vol 22 (14) ◽  
pp. 7701
Author(s):  
Ilandarage Menu Neelaka Molagoda ◽  
Kyoung-Tae Lee ◽  
Athapaththu Mudiyanselage Gihan Kavinda Athapaththu ◽  
Yung-Hyun Choi ◽  
Jaeyoung Hwang ◽  
...  

Ziziphus jujuba extracts possess a broad spectrum of biological activities, such as antioxidant and anticancer activities in melanoma cancers. Nevertheless, the compounds contain high antioxidant capacities and anticancer activities in melanoma cells, shown to be effective in hyperpigmentation disorders, but whether flavonoid glycosides from Z. jujuba regulate anti-melanogenesis remains unclear. In this study, we evaluated the anti-melanogenic activity of five flavonoid glycosides from Z. jujuba var. inermis (Bunge) Rehder seeds, including jujuboside A (JUA), jujuboside B (JUB), epiceanothic acid (EPA), betulin (BTL), and 6’’’-feruloylspinosin (FRS), in B16F10 melanoma cells and zebrafish larvae. According to our results, JUB, EPA, and FRS potently inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and prevented hyperpigmentation in zebrafish larvae. In particular, under α-MSH-stimulated conditions, FRS most significantly inhibited α-MSH-induced intracellular and extracellular melanin content in B16F10 melanoma cells. Additionally, JUB, EPS, and FRS remarkably downregulated melanogenesis in α-MSH-treated zebrafish larvae, with no significant change in heart rate. Neither JUA nor BTA were effective in downregulating melanogenesis in B16F10 melanoma cells and zebrafish larvae. Furthermore, JUB, EPA, and FRS directly inhibited in vitro mushroom tyrosinase enzyme activity. JUB, EPA, and FRS also downregulated cyclic adenosine monophosphate (cAMP) levels and the phosphorylation of cAMP-response element-binding protein (CREB), and subsequent microphthalmia transcription factor (MITF) and tyrosinase expression. In conclusion, this study demonstrated that JUB, EPA, and FRS isolated from Z. jujuba var. inermis (Bunge) Rehder seeds exhibit potent anti-melanogenic properties by inhibition of the cAMP-CERB-MITF axis and consequent tyrosinase activity.


2021 ◽  
Vol 13 (4) ◽  
pp. 1030-1035
Author(s):  
Thanitsara Songtavisin ◽  
Benjamart Pratoomthai ◽  
Warachin Gangnonngiw ◽  
Jarinyaporn Naowaboot

KSBB Journal ◽  
2021 ◽  
Vol 36 (2) ◽  
pp. 139-144
Author(s):  
Kyung-Mi Lee ◽  
Jung-Hwan Kim ◽  
Kyeong-Hwan Kang ◽  
Joon-Ho Hwang ◽  
Seung-Young Kim

Sign in / Sign up

Export Citation Format

Share Document