Variability of In Vivo Recovery of Factor IX after Infusion of Monoclonal Antibody Purified Factor IX Concentrates in Patients with Hemophilia B

1995 ◽  
Vol 73 (05) ◽  
pp. 779-784 ◽  
Author(s):  
Gilbert C White ◽  
Amy D Shapiro ◽  
Elizabeth M Kurczynski ◽  
Hugh C Kim ◽  
Garrett E Bergman ◽  
...  

SummaryMonoclonal antibody purified factor IX concentrate, Mononine® (Armour Pharmaceutical Company, Kankakee, Illinois, USA), is a recently developed replacement factor concentrate for the treatment of patients with hemophilia B. The pharmacokinetic properties of monoclonal antibody purified factor IX concentrate (MAb Factor IX concentrate) have been evaluated in only small samples of patients, and little is known about those factors that might influence in vivo recovery of factor IX after infusion in a larger patient population. In vivo recovery of factor IX was therefore evaluated for 80 different indications in 72 patients who received MAb Factor IX concentrate for the management of spontaneous or trauma-induced bleeding, or as prophylaxis with surgery. The average recovery after infusions for presurgical pharmacokinetic analysis (mean ± standard deviation) was 1.28 ± 0.56 U/dl rise per U/kg infused (range 0.41-2.80), and the average recovery after all infusions for treatment was 1.23 ± 0.49 U/dl rise per U/kg infused (range -0.35-2.92). Recovery values for multiple MAb Factor IX doses in a given patient were also variable; the average recovery was 1.22 ± 0.53 U/dl rise per U/kg given, and standard deviations ranged from 0.03 to 1.26. Patient age, weight, and MAb Factor IX concentrate dose minimally but significantly influenced factor IX recovery. There was no significant effect of either race, history of previous thrombotic complications during treatment with other replacement factor concentrates, or bleeding state on recovery. All of the patients treated with this preparation experienced excellent hemostasis, and no thrombotic complications were observed.

Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 568-575 ◽  
Author(s):  
HC Kim ◽  
CW McMillan ◽  
GC White ◽  
GE Bergman ◽  
MW Horton ◽  
...  

Abstract Replacement therapy for hemophilia B (factor IX deficiency) using prothrombin complex concentrate (PCC) has been associated with serious complications of thromboembolic events and transmission of viral infections. Monoclonal antibody-purified factor IX (Mononine) provides a highly purified factor IX concentrate, while eliminating other vitamin K-dependent factors (II, VII, and X). Mononine was evaluated for in vivo recovery, half-life, and for its safety and efficacy in 10 patients with hemophilia B. The in vivo recovery of factor IX with Mononine was a 0.67 +/- 0.14 U/dL (mean +/- SD) increase per 1U/kg of infused factor IX, and the biologic half-life (t1/2), determined using the terminal phase of elimination, was 22.6 +/- 8.1 hours. Comparison of in vivo recovery of other vitamin K-dependent factors following a single infusion of either Mononine or PCC showed that, whereas Mononine infusion caused no changes in other vitamin K-dependent factors or in prothrombin activation fragment (F1+2), PCC infusion was associated with significant increases of factors II (2.7 U/dL per 1 U/dL of IX increase) and X (2.2 U/dL for 1 U/dL for 1 U/dL of IX). Patients who used Mononine as their sole therapeutic material during the 12-month period showed an excellent response in hemostasis for their bleeding episodes. Their experience with long-term use of Mononine was at least equivalent to their previous experience with PCC in the frequency and amount of factor usage. No patients developed antibody against mouse IgG or an increase in IX inhibitor during the 12-month period. These results indicate that monoclonal antibody-purified factor IX concentrate provides hemostatically effective factor IX replacement while avoiding extraneous thrombogenic substances.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 568-575
Author(s):  
HC Kim ◽  
CW McMillan ◽  
GC White ◽  
GE Bergman ◽  
MW Horton ◽  
...  

Replacement therapy for hemophilia B (factor IX deficiency) using prothrombin complex concentrate (PCC) has been associated with serious complications of thromboembolic events and transmission of viral infections. Monoclonal antibody-purified factor IX (Mononine) provides a highly purified factor IX concentrate, while eliminating other vitamin K-dependent factors (II, VII, and X). Mononine was evaluated for in vivo recovery, half-life, and for its safety and efficacy in 10 patients with hemophilia B. The in vivo recovery of factor IX with Mononine was a 0.67 +/- 0.14 U/dL (mean +/- SD) increase per 1U/kg of infused factor IX, and the biologic half-life (t1/2), determined using the terminal phase of elimination, was 22.6 +/- 8.1 hours. Comparison of in vivo recovery of other vitamin K-dependent factors following a single infusion of either Mononine or PCC showed that, whereas Mononine infusion caused no changes in other vitamin K-dependent factors or in prothrombin activation fragment (F1+2), PCC infusion was associated with significant increases of factors II (2.7 U/dL per 1 U/dL of IX increase) and X (2.2 U/dL for 1 U/dL for 1 U/dL of IX). Patients who used Mononine as their sole therapeutic material during the 12-month period showed an excellent response in hemostasis for their bleeding episodes. Their experience with long-term use of Mononine was at least equivalent to their previous experience with PCC in the frequency and amount of factor usage. No patients developed antibody against mouse IgG or an increase in IX inhibitor during the 12-month period. These results indicate that monoclonal antibody-purified factor IX concentrate provides hemostatically effective factor IX replacement while avoiding extraneous thrombogenic substances.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3955-3955
Author(s):  
Vicente R. Cortina ◽  
T. Lissichkov ◽  
K. Zavilska ◽  
M. Matysiak ◽  
L. Gercheva ◽  
...  

Abstract Objectives The objective of the present study was two fold: first, to determine the pharmacokinetic (PK) profile of the plasma-derived FIX concentrate AlphaNine® in patients with congenital severe haemophilia B (FIX:C 2%). To do this, two PK studies were carried out one six months after the first. The second objective was a comparison of the Alphanine® PK profile with the recombinant Factor IX, BeneFIX®. Patients and methods The first study was a prospective, five-center, open-label, comparative, PK study carried out in 25 severe hemophilia B patients who received 2 single doses of 65–75 IU/kg of AlphaNine® within 6 months (t=0 and t=6). The following parameters were assessed: in vivo recovery, half-life, AUC, mean residence time and clearance. As an extension of the study, a single dose of 65–75 IU/kg of BeneFIX® was administered in 9 out of 25 patients, after a wash-out period of 7–15 days. Results Table 1 summarizes the results obtained when comparing AlphaNine® within a period of time of 6 months (PK1 vs PK2) in 25 patients. Table 2 shows the results obtained when comparing the in vivo recovery of AlphaNine ® vs BeneFIX ® in the 9 patients studied. Conclusions These results confirm that AlphaNine® PK has similar profile as other plasma derived FIX products presently available to treat Hemophilia B patients. In addition, our results show that the recombinant FIX studied, BeneFIX® has a reduced in vivo recovery when is compared to AlphaNine®. Table 1 Parameter AlphaNine® (PK1) t=0 m AlphaNine® (PK2) t=6 m Results are expressed as Mean (SD) In vivo recovery (IU/dl:IU/kg) 1.0 (0.2) 1.2 (0.4) Half-life (h) 34.5 (6.2) 33.7 (5.4) Clearance (ml/min) 0.07 (0.01) 0.07 (0.01) AUC0-inf (IUxh/dl) 1602 (312) 1644 (360) MRT0-inf (h) 35.8 (5.4) 34.6 (5.2) Table 2 Parameter AlphaNine® (PK2) BeneFIX® Results are expressed as Mean (SD); * p<0.05 for the comparison of the in vivo recovery for the BeneFIX® group with the AlphaNine® PK2 In vivo recovery (IU/dl:IU/kg) 1.3 (0.5) 0.8 (0.2)*


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2225-2225
Author(s):  
Edward D. Gomperts ◽  
Shashikant Apte ◽  
Utpal Chaudhuri ◽  
Joseph M John ◽  
Vijay Ramanan ◽  
...  

Abstract Abstract 2225 Introduction IB1001 is a recombinant factor IX product being investigated for the treatment and prevention of bleeding in individuals with hemophilia B. Pharmacokinetics (PK) in adults (>12 years) demonstrated that IB1001 had results similar to the currently available recombinant FIX with respect to parameters such as terminal phase half-life and incremental recovery. We report the interim findings from a PK assessment in children <12 years, with severe hemophilia B (FIX <2%), >50 prior exposure days to FIX, and no history of or currently detectable inhibitor to FIX. Methods Non-randomized, open-label PK study with patients receiving 75±5 IU/kg of IB1001 following a washout period of ≥4 days from a previous FIX infusion. Factor IX levels were determined pre-infusion and at 15–30 minutes, 4–6, 24–26, and 68–72 hours post-infusion. Additional samples could be drawn at 1–3 and 10–14 hours. Calculated PK parameters were: half-life (β-phase t1/2, determined using a robust regression approach [Lee ML et al. XVIth ISTH Congress, Florence, Italy, 1997]) but generally assuming a single compartmental model because of the small number of points, maximum plasma concentration (Cmax), in vivo recovery (IVR) and AUC(0-∞) (determined by the trapezoidal rule). In addition, the AUC(0-t) and mean residence time (MRT) were calculated. Results When compared to the findings previously reported with IB1001 in adult (≥12 years of age) subjects (Martinowitz U et al. Haemophilia, 18, 2012), the results in pediatric patients demonstrate a more rapid metabolism of factor IX as is indicated by the shorter terminal half-life (mean±SD of 19.3±7.8 h versus 29.6±18.2 h in adults) and the smaller AUC0-∞ (mean±SD of 1059±264 versus 1668±598 in adults). In addition, the in vivo recovery was lower (mean±SD of 0.69±0.21) versus that seen in adults (mean±SD of 0.98±0.22). These results are similar to those reported by Berntorp et al (Haemophilia, 7, 2001) with nonacog alfa. Conclusions The pharmacokinetics of IB1001 has previously been shown to be non-inferior to nonacog alfa, another recombinant factor IX, in hemophilia B individuals >12 years of age. The current study is intended to provide information on children <12 and, particularly, <6 years of age. IB1001 is metabolized faster and has a lower recovery than the comparable findings in patients >12 years of age. Although the study is ongoing, these may represent important implications for the potential use of IB1001 in pediatric patients. Disclosures: Gomperts: Inspiration Biopharmaceuticals Inc: Consultancy. Apte:Inspiration Biopharmacauticals Inc: Research Funding. Chaudhuri:Inspiration Biopharmaceuticals Inc: Research Funding. John:Inspiration Biopharmaceuticals Inc: Research Funding. Ramanan:Inspiration Biopharmaceuticals Inc: Research Funding. Liesner:Inspiration Biopharmaceuticals Inc: Research Funding. Shapiro:Inspiration Biopharmaceuticals Inc: Honoraria, Research Funding. Mills:Inspiration Biopharmaceuticals Inc: Employment. Lee:Inspiration Biopharmaceuticals Inc: Employment.


1988 ◽  
Vol 57 (6) ◽  
pp. 341-345 ◽  
Author(s):  
M. K�hler ◽  
E. Seifried ◽  
P. Hellstern ◽  
G. Pindur ◽  
C. Miyashita ◽  
...  

Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2316-2323 ◽  
Author(s):  
Joerg Schuettrumpf ◽  
Roland W. Herzog ◽  
Alexander Schlachterman ◽  
Antje Kaufhold ◽  
Darrel W. Stafford ◽  
...  

Abstract Intramuscular injection of adeno-associated viral (AAV) vector to skeletal muscle of humans with hemophilia B is safe, but higher doses are required to achieve therapeutic factor IX (F.IX) levels. The efficacy of this approach is hampered by the retention of F.IX in muscle extracellular spaces and by the limiting capacity of muscle to synthesize fully active F.IX at high expression rates. To overcome these limitations, we constructed AAV vectors encoding F.IX variants for muscle- or liver-directed expression in hemophilia B mice. Circulating F.IX levels following intramuscular injection of AAV-F.IX-K5A/V10K, a variant with low-affinity to extracellular matrix, were 2-5 fold higher compared with wild-type (WT) F.IX, while the protein-specific activities remained similar. Expression of F.IX-R338A generated a protein with 2- or 6-fold higher specific activity than F.IX-WT following vector delivery to skeletal muscle or liver, respectively. F.IX-WT and variant forms provide effective hemostasis in vivo upon challenge by tail-clipping assay. Importantly, intramuscular injection of AAV-F.IX variants did not trigger antibody formation to F.IX in mice tolerant to F.IX-WT. These studies demonstrate that F.IX variants provide a promising strategy to improve the efficacy for a variety of gene-based therapies for hemophilia B.


Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5095-5103 ◽  
Author(s):  
G Hortelano ◽  
A Al-Hendy ◽  
FA Ofosu ◽  
PL Chang

A potentially cost-effective strategy for gene therapy of hemophilia B is to create universal factor IX-secreting cell lines suitable for implantation into different patients. To avoid graft rejection, the implanted cells are enclosed in alginate-polylysine-alginate microcapsules that are permeable to factor IX diffusion, but impermeable to the hosts' immune mediators. This nonautologous approach was assessed by implanting encapsulated mouse myoblasts secreting human factor IX into allogeneic mice. Human factor IX was detected in the mouse plasma for up to 14 days maximally at approximately 4 ng/mL. Antibodies to human factor IX were detected after 3 weeks at escalating levels, which were sustained throughout the entire experiment (213 days). The antibodies accelerated the clearance of human factor IX from the circulation of the implanted mice and inhibited the detection of human factor IX in the mice plasma in vitro. The encapsulated myoblasts retrieved periodically from the implanted mice up to 213 days postimplantation were viable and continued to secrete human factor IX ex vivo at undiminished rates, hence suggesting continued factor IX gene expression in vivo. Thus, this allogeneic gene therapy strategy represents a potentially feasible alternative to autologous approaches for the treatment of hemophilia B.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4098-4098
Author(s):  
Ernst Boehm ◽  
Michael Dockal ◽  
Meinhard Hasslacher ◽  
Artur Mitterer ◽  
Eva M Muchitsch ◽  
...  

Abstract Recombinant factor IX (rFIX) expressed in Chinese hamster ovary (CHO) cells has been shown to be safe and effective in clinical studies, but differs in pharmacokinetics from plasma-derived FIX (pdFIX). In clinical studies, CHO-derived rFIX had a 30–50 % lower in-vivo recovery when compared to pdFIX, whereas mean residence time and terminal half-life did not differ between preparations. Although rFIX shows high similarity to pdFIX in structure and function, differences in glycosylation and gamma-carboxylation degree can be detected. Moreover, although experimental proof has yet to be published, the lower degree of phosphorylation of amino acid serine 155, and the lower degree of sulfation of tyrosine 158 have been hypothesized to be causative for the lower in-vivo recovery of rFIX. These two modifications occur at less than 20 % for the tyrosine-sulfation and at less than 1 % for the serine phosphorylation in rFIX, whereas pdFIX has both modifications to more than 90 % completed. We identified human HEK293 cells to perform rFIX phosphorylation and sulfation to a higher extent than CHO cells. A rFIX-producing cell line derived from HEK293 cells was generated by stable transfection, and was adapted to suspension culture conditions to allow lab-scale fermentation. rFIX was produced and purified from a single fermentation run using two different down-stream process schemes: the first was able to enrich high-phosphorylated and -sulfated rFIX; the second to purify total rFIX from the supernatant at high yield. For pharmacokinetic comparison, these HEK293 materials, CHO-derived rFIX, and a pdFIX preparation were formulated in the same buffer. Determination of phosphorylation and sulfation by mass spectrometry showed a phosphorylation and sulfation degree of 50 % plus a 20 % single modification (phosphorylation or sulfation) for the HEK293-material purified by the modification enrichment method versus 15 % for both modifications plus a 15 % single modification for the material purified by the high-yield protocol. The values for CHO-derived rFIX and pdFIX were similar to those in the literature. Oligosaccharide mapping revealed glycosylation differences among CHO-, HEK293-, and pdFIX preparations, but high similarity between both HEK293-derived materials. We compared the pharmacokinetics of the various FIX preparations in FIX-knock-out mice. In-vivo recovery and area under the curve were statistically significantly higher for the high phosphorylated and sulfated HEK293-material than for total rFIX derived from HEK293 cells. However, these two parameters were lower for both HEK293-derived rFIX preparations than for CHO-derived rFIX, and lower for CHO-derived rFIX than for pdFIX. This may be due to glycosylation differences between these FIX preparations. Mean residence times and terminal half-lives were similar for all preparations. In summary, these findings emphasize that the degree of rFIX-sulfation and -phosphorylation influences the pharmacokinetic properties of rFIX.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2333-2333
Author(s):  
Pamela R. Westmark ◽  
Pansakorn Tanratana ◽  
John P. Sheehan

Abstract Introduction Hemophilia B is an X-linked genetic disorder characterized by defective factor IX activity. Recombinant factor IX (rFIX) is employed as protein replacement for the treatment and prophylaxis of bleeding episodes. Antithrombin is the primary plasma inhibitor of activated factor IX (FIXa), and inhibition is enhanced by heparin/heparan sulfate. We hypothesize that selective disruption of protease interactions with heparin and antithrombin via mutations in the respective heparin- and antithrombin-binding exosites may enhance rFIX(a) efficacy by prolonging protease half-life in vivo. Aim To assess the effect of mutations in the FIX(a) heparin- and antithrombin-binding exosites on traditional coagulant activity, thrombin generation, and protease half-life in human plasma. Methods Human FIX cDNA constructs with alanine substitutions (chymotrypsinogen numbering) in the heparin exosite (K126A, K132A, K126A/K132A), antithrombin exosite (R150A), or both (K126A/R150A, K132A/R150A, K126A/K132A/R150A) were expressed in HEK293 cell lines. Recombinant zymogens were purified from conditioned media, and a portion activated to protease with human factor XIa. Zymogen and protease forms were characterized in APTT-based clotting assays, and tissue factor (TF) and FIXa-initiated thrombin generation (TG) assays in pooled human FIX-deficient plasma, respectively. Comparisons were made with human plasma-derived factor IX (pFIX) and recombinant FIX wild type (WT). Protease half-life in pooled, citrated human plasma was determined using a novel assay that detects FIXa activity by TG response. Results Zymogen coagulant activities (% WT ± S.E) were: pFIX 105.2 ± 2.8, WT 100 ± 7.1, K132A/R150A 75.8 ± 3.4, K126A 63.3 ± 2.3, R150A 62.4 ± 4.0, K132A 30.9 ± 1.0, K126A/R150A 27.0 ± 2.1, K126A/K132A 20.6 ± 9.2, and K126A/K132A/R150A 7.3 ± 3.8. Similarly, protease coagulant activities were: WT 100 ± 6.1, pFIXa 98.4 ± 11.4, K132A 91.4 ± 1.6, K132A/R150A 84.9 ± 2.8, R150A 77.1 ± 5.8, K126A 39.5 ± 2.4, K126A/R150A 25.3 ± 2.8, K126A/K132A/R150A 10.9 ± 0.6, and K126A/K132A 9.3 ± 0.6. In contrast to their relative coagulant activities, FIX K126A (1.9-fold), R150 (1.6-fold), and K132A/R150A (1.3-fold) supported increased peak thrombin concentrations during TF-triggered TG; pFIX, FIX K132A and K126A/R150A were similar to WT; and FIX K126A/K132A/R150A (0.6-fold) and K126A/K132A (0.2-fold) demonstrated marked reductions in peak thrombin relative to WT. In the FIXa-initiated TG assay, FIXa K126A/R150A and K132A/R150A (1.5-fold) demonstrated significantly increased peak thrombin concentrations; pFIXa, FIXa K132A, R150A, and K126A (0.8-1.0 fold) were similar to WT; while FIXa K126A/K132A and K126A/K132A/R150A demonstrated markedly reduced (0.2-0.3 fold) and delayed peak thrombin concentrations. In pooled, citrated FIX-deficient plasma, FIXa WT (40.9 ± 1.4 min) and K126A/K132A (37.2 ± 0.7 min) demonstrated similar half-lives, while FIXa R150A, K126A/R150A, and K132A/R150A all had half-lives > 2 hr. Conclusions Single exosite mutations resulted in mild to moderate reductions in coagulant activity, while the double mutation in the heparin exosite (K126A/K132A) markedly reduced activity, likely due to a synergistic effect on cofactor binding. Traditional coagulant activity did not accurately represent the ability of the mutant proteins to support thrombin generation. Despite variable reductions in coagulant activity, FIX K126A, K132A, R150A, K126A/R150A and K132A/R150A supported levels of plasma thrombin generation that were equal to or greater than FIX WT. The plasma half-life of FIXa WT activity was remarkably lengthy, and while mutations in the heparin exosite had negligible effects, R150A in the antithrombin exosite substantially increased protease half-life, consistent with a primary role for antithrombin in the plasma inhibition of FIXa. Thus, single exosite mutations did not significantly disrupt the procoagulant function of human FIX(a), and combined exosite mutations (K126A/R150A and K132A/R150A) maintain or enhance plasma thrombin generation while disrupting exosite-mediated regulatory mechanisms. The combination of intact procoagulant function with disruption of antithrombin- and heparin-mediated regulation of FIX(a) will potentially enhance in vivo recovery, prolong plasma half-life, and enhance the efficacy of hemophilia B replacement therapy. Disclosures: Sheehan: Novo Nordisk Access to Insight Basic Research Grant: Research Funding; Bayer Hemophilia Awards Program: Research Funding; Diagnostica Stago: reagents, reagents Other.


Sign in / Sign up

Export Citation Format

Share Document