scholarly journals Intraoperative online image-guided biopsie on the basis of a Deep Learning algorithm to the automatic detection of head and neck carcinoma by means of real time Nah-Infrarot ICG fluorescence endoscopy

2019 ◽  
Author(s):  
A Dittberner ◽  
S Sickert ◽  
J Denzler ◽  
O Guntinias-Lichius
Author(s):  
Liu Chenang ◽  
Wang Rongxuan ◽  
Zhenyu Kong ◽  
Babu Suresh ◽  
Joslin Chase ◽  
...  

Layer-wise 3D surface morphology information is critical for the quality monitoring and control of additive manufacturing (AM) processes. However, most of the existing 3D scan technologies are either contact or time consuming, which are not capable of obtaining the 3D surface morphology data in a real-time manner during the process. Therefore, the objective of this study is to achieve real-time 3D surface data acquisition in AM, which is achieved by a supervised deep learning-based image analysis approach. The key idea of this proposed method is to capture the correlation between 2D image and 3D point cloud, and then quantify this relationship by using a deep learning algorithm, namely, convolutional neural network (CNN). To validate the effectiveness and efficiency of the proposed method, both simulation and real-world case studies were performed. The results demonstrate that this method has strong potential to be applied for real-time surface morphology measurement in AM, as well as other advanced manufacturing processes.


2020 ◽  
pp. 158-161
Author(s):  
Chandraprabha S ◽  
Pradeepkumar G ◽  
Dineshkumar Ponnusamy ◽  
Saranya M D ◽  
Satheesh Kumar S ◽  
...  

This paper outfits artificial intelligence based real time LDR data which is implemented in various applications like indoor lightning, and places where enormous amount of heat is produced, agriculture to increase the crop yield, Solar plant for solar irradiance Tracking. For forecasting the LDR information. The system uses a sensor that can measure the light intensity by means of LDR. The data acquired from sensors are posted in an Adafruit cloud for every two seconds time interval using Node MCU ESP8266 module. The data is also presented on adafruit dashboard for observing sensor variables. A Long short-term memory is used for setting up the deep learning. LSTM module uses the recorded historical data from adafruit cloud which is paired with Node MCU in order to obtain the real-time long-term time series sensor variables that is measured in terms of light intensity. Data is extracted from the cloud for processing the data analytics later the deep learning model is implemented in order to predict future light intensity values.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012067
Author(s):  
Ruba R. Nori ◽  
Rabah N. Farhan ◽  
Safaa Hussein Abed

Abstract Novel algorithm for fire detection has been introduced. CNN based System localization of fire for real time applications was proposed. Deep learning algorithms shows excellent results in a way that it accuracy reaches very high accuracy for fire image dataset. Yolo is a superior deep learning algorithm that is capable of detect and localize fires in real time. The luck of image dataset force us to limit the system in binary classification test. Proposed model was tested on dataset gathered from the internet. In this article, we built an automated alert system integrating multiple sensors and state-of-the art deep learning algorithms, which have a limited number of false positive elements and which provide our prototype robot with reasonable accuracy in real-time data and as little as possible to track and record fire events as soon as possible.


2020 ◽  
Vol 38 (12) ◽  
pp. 1304-1311 ◽  
Author(s):  
Benjamin H. Kann ◽  
Daniel F. Hicks ◽  
Sam Payabvash ◽  
Amit Mahajan ◽  
Justin Du ◽  
...  

PURPOSE Extranodal extension (ENE) is a well-established poor prognosticator and an indication for adjuvant treatment escalation in patients with head and neck squamous cell carcinoma (HNSCC). Identification of ENE on pretreatment imaging represents a diagnostic challenge that limits its clinical utility. We previously developed a deep learning algorithm that identifies ENE on pretreatment computed tomography (CT) imaging in patients with HNSCC. We sought to validate our algorithm performance for patients from a diverse set of institutions and compare its diagnostic ability to that of expert diagnosticians. METHODS We obtained preoperative, contrast-enhanced CT scans and corresponding pathology results from two external data sets of patients with HNSCC: an external institution and The Cancer Genome Atlas (TCGA) HNSCC imaging data. Lymph nodes were segmented and annotated as ENE-positive or ENE-negative on the basis of pathologic confirmation. Deep learning algorithm performance was evaluated and compared directly to two board-certified neuroradiologists. RESULTS A total of 200 lymph nodes were examined in the external validation data sets. For lymph nodes from the external institution, the algorithm achieved an area under the receiver operating characteristic curve (AUC) of 0.84 (83.1% accuracy), outperforming radiologists’ AUCs of 0.70 and 0.71 ( P = .02 and P = .01). Similarly, for lymph nodes from the TCGA, the algorithm achieved an AUC of 0.90 (88.6% accuracy), outperforming radiologist AUCs of 0.60 and 0.82 ( P < .0001 and P = .16). Radiologist diagnostic accuracy improved when receiving deep learning assistance. CONCLUSION Deep learning successfully identified ENE on pretreatment imaging across multiple institutions, exceeding the diagnostic ability of radiologists with specialized head and neck experience. Our findings suggest that deep learning has utility in the identification of ENE in patients with HNSCC and has the potential to be integrated into clinical decision making.


2021 ◽  
pp. 137-147
Author(s):  
Nilay Nishant ◽  
Ashish Maharjan ◽  
Dibyajyoti Chutia ◽  
P. L. N. Raju ◽  
Ashis Pradhan

2021 ◽  
Author(s):  
Subrata Bhowmik

Abstract Pipeline corrosion is a major identified threat in the offshore oil and gas industry. In this paper, a novel computer vision-based digital twin concept for real-time corrosion inspection is proposed. The Convolution Neural Network (CNN) algorithm is used for the automated corrosion identification and classification from the ROV images and In-Line Inspection data. Predictive and prescriptive maintenance strategies are recommended based on the corrosion assessment through the digital twin. A Deep-learning Image processing model is developed based on the pipeline inspection images and In-Line Inspection images from some previous inspection data sets. During the corrosion monitoring through pipeline inspection, the digital twin system would be able to gather data and, at the same time, process and analyze the collected data. The analyzed data can be used to classify the corrosion type and determine the actions to be taken (develop predictive and prescriptive maintenance strategy). Convolution Neural Network, a well known Deep Learning algorithm, is used in the Tensorflow framework with Keras in the backend is used in the digital twin for corrosion inspection. CNN algorithm will first detect the corrosion and then the type of corrosion based on image classification. The deep-learning network training is done using 4000 images taken from the inspection video frames from a subsea pipeline inspection using ROV. The performances of both the methods are compared based on result accuracy as well as processing time. Deep Learning algorithm, CNN has approximately 81% accuracy for correctly identifying the corrosion and classify them based on severity through image classification. The processing time for the deep-learning method is significantly faster, and the digital twin generates the predictive or prescriptive strategy based on the inspection result in real-time. Deep-learning based digital twin for Corrosion inspection significantly improve current corrosion identification and reduce the overall time for offshore inspection. The inspection data loss due to the communication interference during real-time assessment can be eliminated using the digital twin. The image data can recover the required features based on other features available through the previous inspection. Furthermore, the system can adapt to the unrefined environment, making the proposed system robust and useful for other detection applications. The digital twin makes a recommended decision based on an expert system database during the real-time inspection. The complete corrosion monitoring process is performed in real-time on a cloud-based digital twin. The proposed pipeline corrosion inspection digital twin based on the CNN method will significantly reduce the overall maintenance cost and improve the efficiency of the corrosion monitoring system.


Sign in / Sign up

Export Citation Format

Share Document