scholarly journals Indoor and Outdoor Fire Localization Using YOLO Algorithm

2021 ◽  
Vol 2114 (1) ◽  
pp. 012067
Author(s):  
Ruba R. Nori ◽  
Rabah N. Farhan ◽  
Safaa Hussein Abed

Abstract Novel algorithm for fire detection has been introduced. CNN based System localization of fire for real time applications was proposed. Deep learning algorithms shows excellent results in a way that it accuracy reaches very high accuracy for fire image dataset. Yolo is a superior deep learning algorithm that is capable of detect and localize fires in real time. The luck of image dataset force us to limit the system in binary classification test. Proposed model was tested on dataset gathered from the internet. In this article, we built an automated alert system integrating multiple sensors and state-of-the art deep learning algorithms, which have a limited number of false positive elements and which provide our prototype robot with reasonable accuracy in real-time data and as little as possible to track and record fire events as soon as possible.

Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 451 ◽  
Author(s):  
Peng Guo ◽  
Zhiyun Xue ◽  
Zac Mtema ◽  
Karen Yeates ◽  
Ophira Ginsburg ◽  
...  

Automated Visual Examination (AVE) is a deep learning algorithm that aims to improve the effectiveness of cervical precancer screening, particularly in low- and medium-resource regions. It was trained on data from a large longitudinal study conducted by the National Cancer Institute (NCI) and has been shown to accurately identify cervices with early stages of cervical neoplasia for clinical evaluation and treatment. The algorithm processes images of the uterine cervix taken with a digital camera and alerts the user if the woman is a candidate for further evaluation. This requires that the algorithm be presented with images of the cervix, which is the object of interest, of acceptable quality, i.e., in sharp focus, with good illumination, without shadows or other occlusions, and showing the entire squamo-columnar transformation zone. Our prior work has addressed some of these constraints to help discard images that do not meet these criteria. In this work, we present a novel algorithm that determines that the image contains the cervix to a sufficient extent. Non-cervix or other inadequate images could lead to suboptimal or wrong results. Manual removal of such images is labor intensive and time-consuming, particularly in working with large retrospective collections acquired with inadequate quality control. In this work, we present a novel ensemble deep learning method to identify cervix images and non-cervix images in a smartphone-acquired cervical image dataset. The ensemble method combined the assessment of three deep learning architectures, RetinaNet, Deep SVDD, and a customized CNN (Convolutional Neural Network), each using a different strategy to arrive at its decision, i.e., object detection, one-class classification, and binary classification. We examined the performance of each individual architecture and an ensemble of all three architectures. An average accuracy and F-1 score of 91.6% and 0.890, respectively, were achieved on a separate test dataset consisting of more than 30,000 smartphone-captured images.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
David Nieuwenhuijse ◽  
Bas Oude Munnink ◽  
My Phan ◽  
Marion Koopmans

Abstract Sewage samples have a high potential benefit for surveillance of circulating pathogens because they are easy to obtain and reflect population-wide circulation of pathogens. These type of samples typically contain a great diversity of viruses. Therefore, one of the main challenges of metagenomic sequencing of sewage for surveillance is sequence annotation and interpretation. Especially for high-threat viruses, false positive signals can trigger unnecessary alerts, but true positives should not be missed. Annotation thus requires high sensitivity and specificity. To better interpret annotated reads for high-threat viruses, we attempt to determine how classifiable they are in a background of reads of closely related low-threat viruses. As an example, we attempted to distinguish poliovirus reads, a virus of high public health importance, from other enterovirus reads. A sequence-based deep learning algorithm was used to classify reads as either polio or non-polio enterovirus. Short reads were generated from 500 polio and 2,000 non-polio enterovirus genomes as a training set. By training the algorithm on this dataset we try to determine, on a single read level, which short reads can reliably be labeled as poliovirus and which cannot. After training the deep learning algorithm on the generated reads we were able to calculate the probability with which a read can be assigned to a poliovirus genome or a non-poliovirus genome. We show that the algorithm succeeds in classifying the reads with high accuracy. The probability of assigning the read to the correct class was related to the location in the genome to which the read mapped, which conformed with our expectations since some regions of the genome are more conserved than others. Classifying short reads of high-threat viral pathogens seems to be a promising application of sequence-based deep learning algorithms. Also, recent developments in software and hardware have facilitated the development and training of deep learning algorithms. Further plans of this work are to characterize the hard-to-classify regions of the poliovirus genome, build larger training databases, and expand on the current approach to other viruses.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Aan Chu ◽  
David Squirrell ◽  
Andelka M. Phillips ◽  
Ehsan Vaghefi

This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.


Author(s):  
Liu Chenang ◽  
Wang Rongxuan ◽  
Zhenyu Kong ◽  
Babu Suresh ◽  
Joslin Chase ◽  
...  

Layer-wise 3D surface morphology information is critical for the quality monitoring and control of additive manufacturing (AM) processes. However, most of the existing 3D scan technologies are either contact or time consuming, which are not capable of obtaining the 3D surface morphology data in a real-time manner during the process. Therefore, the objective of this study is to achieve real-time 3D surface data acquisition in AM, which is achieved by a supervised deep learning-based image analysis approach. The key idea of this proposed method is to capture the correlation between 2D image and 3D point cloud, and then quantify this relationship by using a deep learning algorithm, namely, convolutional neural network (CNN). To validate the effectiveness and efficiency of the proposed method, both simulation and real-world case studies were performed. The results demonstrate that this method has strong potential to be applied for real-time surface morphology measurement in AM, as well as other advanced manufacturing processes.


2020 ◽  
pp. 158-161
Author(s):  
Chandraprabha S ◽  
Pradeepkumar G ◽  
Dineshkumar Ponnusamy ◽  
Saranya M D ◽  
Satheesh Kumar S ◽  
...  

This paper outfits artificial intelligence based real time LDR data which is implemented in various applications like indoor lightning, and places where enormous amount of heat is produced, agriculture to increase the crop yield, Solar plant for solar irradiance Tracking. For forecasting the LDR information. The system uses a sensor that can measure the light intensity by means of LDR. The data acquired from sensors are posted in an Adafruit cloud for every two seconds time interval using Node MCU ESP8266 module. The data is also presented on adafruit dashboard for observing sensor variables. A Long short-term memory is used for setting up the deep learning. LSTM module uses the recorded historical data from adafruit cloud which is paired with Node MCU in order to obtain the real-time long-term time series sensor variables that is measured in terms of light intensity. Data is extracted from the cloud for processing the data analytics later the deep learning model is implemented in order to predict future light intensity values.


Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 803
Author(s):  
Luu-Ngoc Do ◽  
Byung Hyun Baek ◽  
Seul Kee Kim ◽  
Hyung-Jeong Yang ◽  
Ilwoo Park ◽  
...  

The early detection and rapid quantification of acute ischemic lesions play pivotal roles in stroke management. We developed a deep learning algorithm for the automatic binary classification of the Alberta Stroke Program Early Computed Tomographic Score (ASPECTS) using diffusion-weighted imaging (DWI) in acute stroke patients. Three hundred and ninety DWI datasets with acute anterior circulation stroke were included. A classifier algorithm utilizing a recurrent residual convolutional neural network (RRCNN) was developed for classification between low (1–6) and high (7–10) DWI-ASPECTS groups. The model performance was compared with a pre-trained VGG16, Inception V3, and a 3D convolutional neural network (3DCNN). The proposed RRCNN model demonstrated higher performance than the pre-trained models and 3DCNN with an accuracy of 87.3%, AUC of 0.941, and F1-score of 0.888 for classification between the low and high DWI-ASPECTS groups. These results suggest that the deep learning algorithm developed in this study can provide a rapid assessment of DWI-ASPECTS and may serve as an ancillary tool that can assist physicians in making urgent clinical decisions.


Sign in / Sign up

Export Citation Format

Share Document