Carbonyl-Photoredox/Metal Dual Catalysis: Applications in Organic Synthesis

Synthesis ◽  
2020 ◽  
Vol 52 (23) ◽  
pp. 3493-3510
Author(s):  
Hong-Xi Li ◽  
Da-Liang Zhu ◽  
David James Young

Photoredox/metal dual catalysis is a versatile tandem methodology to construct carbon–carbon and carbon–heteroatom bonds. The focus of this short review is the application of this technology to C(sp3)–C(sp3), C(sp3)–C(sp2), C(sp2)–C(sp2), C(sp2)–O, and C(sp3)–O bond formation induced by readily available and inexpensive carbonyl complexes as single electron transfer agents, photosensitizers, or hydrogen atom transfer agents.1 Introduction2 Homocoupling of Aryl Halides3 Functionalization of C(sp3)–H Bonds3.1 Dehydrogenation of Alkanes3.2 Arylation/Alkylation3.3 Carboxylation3.4 Acylation3.5 Hydroalkylation of Olefins3.6 Hydroalkylation of Imines4 Benzoylation of Aryl Bromides5 Aryl Esterification6 Oxidation of β-Keto Esters7 Conclusions and Future Outlook

2020 ◽  
Vol 74 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Fabrice Dénès

The synthesis of complex molecules via radical reactions involving carbon–carbon and carbon–heteroatom bonds has become a very successful approach. Radical chemistry has long been dominated by the use of tin-based reagents. Those strongly contributed to the development of the field, allowing one to achieve spectacular transformations, most of which being difficult or impossible to achieve under ionic conditions, and giving access to invaluable kinetics data that paved the way for the development of improved protocols and the design of new synthetic strategies. However, tin reagents and tin byproducts are often toxic and they proved to make purification steps sometimes tedious. In this context, tin-free methods have progressively gained in interest. This short review aims at providing the reader with alternative methods employing C–H bonds in place of the classical alkyl halides to generate, via an intermolecular hydrogen atom transfer (HAT), the radical species. Examples of carbon–carbon and carbon–heteroatom bond formation using this type of C–H bond activation approach will be provided, from early reports to the more recent developments.


Synlett ◽  
2020 ◽  
Author(s):  
Shengqing Zhu ◽  
Lingling Chu ◽  
Xiaoliang Feng ◽  
Lei Guo

AbstractA formal ethylene alkylarylation reaction with aryl halides and alkyl oxalates enabled by synergistic photoredox/nickel catalysis is reported. This protocol takes advantage of borates as a traceless activation group, achieving the formal ethylene difunctionalized products via a catalytic three-component 1,2-alkylarylation of vinyl borate followed by a base-assisted deborylation process. The mild conditions allow for excellent functional groups compatibility and broad substrate scope.


ChemInform ◽  
2012 ◽  
Vol 43 (36) ◽  
pp. no-no
Author(s):  
Mikki G. Boswell ◽  
Fanny G. Yeung ◽  
Christian Wolf
Keyword(s):  

Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3347-3356 ◽  
Author(s):  
Gabriele Micheletti ◽  
Carla Boga

This short review provides an overview on the interaction between 1,3,5-triaminobenzene derivatives and different kinds of electrophiles. Due to the ambident reactivity of these nucleophiles (i.e., at the nitrogen atom of the substituents and at the aromatic carbon atom) different compounds can be obtained. Particular attention is devoted to the detection, isolation, and characterization of covalent intermediates of aromatic substitution, starting from Wheland intermediates until the first detection and characterization of Wheland–Meisenheimer intermediates.1 Introduction2 Reactions between 1,3,5-Triaminobenzene Derivatives and Charged Electrophiles2.1 The Proton as an Electrophile2.2 Arenediazonium Salts as Electrophiles3 Reactions between 1,3,5-Triaminobenzene Derivatives and Neutral­ Electrophiles3.1 Alkyl Halides as Electrophiles3.2 Acyl Halides and Sulfonyl Chlorides as Electrophiles3.3 Aryl Halides and Heteroaryl Halides as Electrophiles3.4 Polynitroheteroaromatics as Electrophiles4 Conclusion


2013 ◽  
Vol 91 (5) ◽  
pp. 348-351 ◽  
Author(s):  
Suresh B. Waghmode ◽  
Sudhir S. Arbuj ◽  
Bina N. Wani ◽  
C.S. Gopinath

PdCl2 catalyzed carbon–carbon bond formation (Heck reaction) between substituted aryl halides and olefins was carried out without a ligand, under irradiation with UV–visible light. The results demonstrated that UV–visible light accelerated the rate of the reaction, leading to an excellent yield of corresponding products. The recovered palladium nanoparticles could be thermally recycled several times. PdCl2 gave excellent conversion up to the fifth addition of substrate.


2013 ◽  
Vol 67 (11) ◽  
Author(s):  
Zoran Marković ◽  
Jelena Đorović ◽  
Milan Dekić ◽  
Milanka Radulović ◽  
Svetlana Marković ◽  
...  

AbstractAntioxidant activity of erodiol was examined at the M05-2X/6-311+G(d,p) level of theory in the gas and aqueous phases. The structure and energy of radicals and anions of the most stable erodiol rotamer were analyzed. To estimate antioxidant potential of erodiol, different molecular properties were examined: bond dissociation enthalpy, proton affinity together with electron transfer energy, and ionization potential followed by proton dissociation enthalpy. It was found that hydrogen atom transfer is the prevailing mechanism of erodiol behavior in gas; whereas single electron transfer followed by proton transfer and sequential proton loss electron transfer mechanisms represent the thermodynamically preferred reaction paths in water.


Sign in / Sign up

Export Citation Format

Share Document